KGRKJGETMRETU895U-589TY5MIGM5JGB5SDFESFREWTGR54TY
Server : Apache/2.4.41 (Ubuntu)
System : Linux vmi1525618.contaboserver.net 5.4.0-105-generic #119-Ubuntu SMP Mon Mar 7 18:49:24 UTC 2022 x86_64
User : www-data ( 33)
PHP Version : 8.2.12
Disable Function : NONE
Directory :  /var/www/parasoffline.edukrypt.in/uploads/quiz/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : /var/www/parasoffline.edukrypt.in/uploads/quiz/1584188942ankit-new(1).html
<!DOCTYPE html>
<!-- Generated by PHPWord -->
<html>
<head>
<meta charset="UTF-8" />
<title>PHPWord</title>
<style>
* {font-family: Calibri; font-size: 11pt;}
a.NoteRef {text-decoration: none;}
hr {height: 1px; padding: 0; margin: 1em 0; border: 0; border-top: 1px solid #CCC;}
table {border: 1px solid black; border-spacing: 0px; width : 100%;}
td {border: 1px solid black;}
.Normal {font-family: 'Calibri'; font-size: 11pt; color: #auto;}
h1 {font-size: 24pt; font-weight: bold;}
h2 {font-size: 18pt; font-weight: bold;}
h3 {font-size: 14pt; font-weight: bold;}
h4 {font-size: 12pt; font-weight: bold;}
h5 {font-weight: bold;}
h6 {font-size: 10pt; font-weight: bold;}
.Balloon Text Char {font-family: 'Tahoma'; font-size: 8pt;}
.ListLabel 1 {}
.ListLabel 2 {}
.ListLabel 3 {}
.ListLabel 4 {}
.ListLabel 5 {}
.ListLabel 6 {}
.ListLabel 7 {}
.ListLabel 8 {}
.ListLabel 9 {}
.Heading {font-family: 'Liberation Sans'; font-size: 14pt;}
.Body Text {margin-top: 0pt; margin-bottom: 7pt;}
.List {font-family: 'Lohit Devanagari';}
.Caption {font-family: 'Lohit Devanagari'; font-size: 12pt; font-style: italic;}
.Index {font-family: 'Lohit Devanagari';}
.Title {font-size: 36pt; font-weight: bold;}
.Subtitle {font-family: 'Georgia'; font-size: 24pt; color: #666666; font-style: italic;}
.Balloon Text {font-family: 'Tahoma'; font-size: 8pt;}
</style>
</head>
<body>
<p style="margin-top: 0pt; margin-bottom: 0pt;"></p>
<table class="a">
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">4</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">Q-1. <span style="font-family: 'Arial'; font-size: 12pt;">Formation of a solution from two components can be considered as </span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;"><span style="font-family: 'Arial'; font-size: 12pt;"> </span><span style="font-family: 'Arial'; font-size: 12pt;">(i) pure solvent </span><span style="font-family: 'Symbol'; font-size: 12pt;">→</span><span style="font-family: 'Arial'; font-size: 12pt;"> separated solvent molecules, </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">1</span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;"><span style="font-family: 'Arial'; font-size: 12pt;"> </span><span style="font-family: 'Arial'; font-size: 12pt;">(ii) pure solute </span><span style="font-family: 'Symbol'; font-size: 12pt;">→</span><span style="font-family: 'Arial'; font-size: 12pt;">separated solute molecules, </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">2</span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;"><span style="font-family: 'Arial'; font-size: 12pt;"> </span><span style="font-family: 'Arial'; font-size: 12pt;">(iii) separated solvent and solute molecules </span><span style="font-family: 'Symbol'; font-size: 12pt;">→</span><span style="font-family: 'Arial'; font-size: 12pt;">solution, </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;"><span style="font-family: 'Arial'; font-size: 12pt;">Solution so formed will be ideal if </span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">Solution-<span style="font-family: 'Arial'; font-size: 12pt;"> If net </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">soln</span><span style="font-family: 'Arial'; font-size: 12pt;"> is the sum of three steps, this means that solute-solvent interactions are similar to solvent- solvent and solute-solute interactions. </span></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">1</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Adaptive</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">a. <span style="font-family: 'Arial'; font-size: 12pt;"> </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">soln</span><span style="font-family: 'Arial'; font-size: 12pt;"> = </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">1</span><span style="font-family: 'Arial'; font-size: 12pt;">+ </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">2</span><span style="font-family: 'Arial'; font-size: 12pt;">+ </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span>	</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">b. <span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">soln</span><span style="font-family: 'Arial'; font-size: 12pt;">= </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">1</span><span style="font-family: 'Arial'; font-size: 12pt;">+ </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">2</span><span style="font-family: 'Arial'; font-size: 12pt;">- </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">c. <span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">soln</span><span style="font-family: 'Arial'; font-size: 12pt;"> = </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">1</span><span style="font-family: 'Arial'; font-size: 12pt;"> - </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">2</span><span style="font-family: 'Arial'; font-size: 12pt;"> -</span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span>		</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">d. <span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">soln</span><span style="font-family: 'Arial'; font-size: 12pt;"> = </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span><span style="font-family: 'Arial'; font-size: 12pt;"> - </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">1</span><span style="font-family: 'Arial'; font-size: 12pt;"> - </span><span style="font-family: 'Symbol'; font-size: 12pt;"></span><span style="font-family: 'Arial'; font-size: 12pt;">H</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">2</span></p>
</td>
</tr>
</table>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<table class="a0">
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">4</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Q-2. <span style="font-family: 'Arial'; font-size: 12pt;">Which of the following aqueous solutions should have the highest boiling point ?</span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">Solution- <span style="font-family: 'Arial'; font-size: 12pt;">H—O.....H—O...H—O.... On adding acetone, its molecules get in between  </span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;">	<span style="font-family: 'Arial'; font-size: 12pt;">       |             |          |</span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;">	<span style="font-family: 'Arial'; font-size: 12pt;">    CH</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span>	<span style="font-family: 'Arial'; font-size: 12pt;">       CH</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span><span style="font-family: 'Arial'; font-size: 12pt;">     CH</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span></p>
<p style="text-align: justify; margin-top: 3pt; margin-bottom: 3pt;"><span style="font-family: 'Arial'; font-size: 12pt;">the molecules of methanol breaking hydrogen bonds and reducing methanol-methanol attractions. </span></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">2</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Medium</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">a. <span style="font-family: 'Arial'; font-size: 12pt;"> 1.0 M NaOH </span>	</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">b. <span style="font-family: 'Arial'; font-size: 12pt;">10 M Na</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">2</span><span style="font-family: 'Arial'; font-size: 12pt;">SO</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">4</span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">c. <span style="font-family: 'Arial'; font-size: 12pt;">1.0 M NH</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">4</span><span style="font-family: 'Arial'; font-size: 12pt;">NO</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span>		</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">d. <span style="font-family: 'Arial'; font-size: 12pt;">1.0 M KNO</span><span style="font-family: 'Arial'; font-size: 12pt; vertical-align: sub;">3</span></p>
</td>
</tr>
</table>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<table class="a1">
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">4</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">Q-3. <span style="font-family: 'Arial'; font-size: 12pt;">Van&#039;t Hoff factor i is given by the expression __________</span></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Solution-<br />
</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">1</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Hard</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">a. <span style="font-family: 'Arial'; font-size: 12pt;">i = </span><span style="font-family: 'Arial'; font-size: 12pt;">dfasdfasf</span></p>
<p style="margin-top: 0pt; margin-bottom: 8pt;"><span style="font-family: 'Arial'; font-size: 12pt;"> </span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">b.<span style="font-family: 'Arial'; font-size: 12pt;"> i = </span><span style="font-family: 'Arial'; font-size: 12pt;">asdfasdf</span></p>
<p style="margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">c. <span style="font-family: 'Arial'; font-size: 12pt;">i =</span><span style="font-family: 'Arial'; font-size: 12pt;">sadfasdf</span></p>
<p style="margin-top: 0pt; margin-bottom: 8pt;"><span style="font-family: 'Arial'; font-size: 12pt;"> </span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">d. <span style="font-family: 'Arial'; font-size: 12pt;">i = </span><span style="font-family: 'Arial'; font-size: 12pt;">sdfasdfasd</span></p>
<p style="margin-top: 0pt; margin-bottom: 8pt;"><span style="font-family: 'Arial'; font-size: 12pt;"> </span></p>
</td>
</tr>
</table>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<table class="a2">
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">4</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">Q.4. <span style="font-family: 'Arial';">A 50 cm long bar AB is moved with a speed of 4 ms</span><span style="font-family: 'Arial'; vertical-align: super;">-1</span><span style="font-family: 'Arial';"> in a magnetic field B = 0.01 T as shown in the fig.</span></p>
<p style="margin-top: 0; margin-bottom: 0;"><span style="font-family: 'Arial';">      </span><img border="0" style="width: 306px; height: 193px;" src="
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADBATIDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3b/ls
v/XOo13eXCrf3qm/5bL/ALtRrt8uD5f4qCg/hm/3qV1/ezN/0z/+KpP+Wcny7vmp3/Lab/dWgQKq
/uv4flpu39yvzf8ALT/2apF+9H937tNb7i/9dP4aAGP/AMt/l/h/ipd3+kL/ANc/++qJNv8ApH+7
Tv8Alsrf9M6AGov7uH7v3qGX93N/vUqHEcX+9Q3yxzbv71AC/N5zL/s0i/8ALDd97bT/AJfMb/dp
q/8ALH/doGC/NH/20/8AZqc3/LT/AHfu03+D/gVOkX5ZP722gA3fvo/92mdo9v3fMp//AC0X/dqK
NflT/fagQrfdm+Xd81O/5bN/u01l3LN/vU/b++k+X+GgBV+7H838NRtt8lvm/wCWn/s1Oj+7Ftb+
H/vqj/ln/wBtP/ZqBg33pv8AdpAv72L5f4aV+Wm+b+GnL/rI22/w0CIgreXF/D89LJt8ub5qE/1c
P+9Tn3bZvmoGL/y8f9s6Ysfy2/8As/8AxNSf8tv+A1HGG8u3oERN/qpvm2/vqkbd50uP+ef8VLt3
JJ/10qT/AJaSf7tAHCR/E/w/LJE0EeqTRjdH5kenyMv/AI6tSP8AEvQURPMh1aNfNX95Jpsyr97+
9tqX4X/8iPp/zfekuP8A0Y1WvH7N/wAIJqW5v4o//Ri0DOib7twyr/F/7LUn/LZv+udRSMq29wzf
Kq/Mzf8AAa8/0rxK2s/EPT5ob9Hs7i3uY47VG/1art2yMv8Aeb5v+A7aBHoa7lW3X/P3aa23yZN3
/PSnKvy2/wAu2mtu8mT5v+Wn/s1AyT/lpN838NC/eh/3aGX5pv8Adpq/6yH/AHaADb8q/wDXT+9S
luLj5v8AO2k+7HH/ABfvKH+VLj+GgRaoptFAiH/lsv8A1zqNfmhtx975qk/5bL/tR1wniK3uNX8d
aJpn9qahZWsljcTSfY7jyWZlZdv/AKFQUdy3+rk/3v4acF/fSf3dq1xz+AYVjk/4qLxN8rf9BJv/
AImn/wDCAwbmX/hJPE3yr/0Em/8AiaAOwVdrR/7K1G3+rXb/AM9K5NfAMO6P/iovE3zL/wBBJqb/
AMIJbqin/hIPE3zSbf8AkJNQB10n3brP93/2WnfN9oXH/POuTbwFBtk/4qDxM2P+opJR/wAIDb7l
X/hIPEn3f+gpJQI6eP5Y4Pl/i/8AiqVv9Tcfw/N/DXKr4Bt9sP8AxUHiRd3/AFFJKG8A2qrI39ve
JPlb5V/tSSgDsN37yT/dpsbf6n/drlf+EBtfMb/ifeJN23/oKSU1PAVvtj2+IPE3P/USkoA6zt/s
+ZSyN8sv+ytca/gSPy2ZfEXiZWaTb/yEG/vUk/w9jk83HijxIq7fu/2h/wDY0DO03L50a/xbaiRv
li/3/wD4quOb4e7po/8AirPEi/L/AM/3/wBjTY/h/tjj2+KvEi7m27ft3/2NAHaltyy7edrU/wD5
aN8v8NcS3w9kXzNvi7xN/wCBi/8AxNOb4etub/irPE33f+fxf/iaAO0X/ll937tDf6v738X/ALNX
Fr4Bb9zt8XeJPmX/AJ/F/wDiaG+H7Kv/ACNniT73/P4v/wATQSdk33pv92nfxR/7tcX/AMIDJuk2
+LvEnyr/AM/S/wDxNH/Cv5PMVf8AhLvE3zL/AM/i/wDxNAzsFX93Gu1flanSf6uauLXwC3lxs3iz
xN8zf8/i/wDxNNl8Cssdxu8XeJNqt83+mL/8TQM7jb++/wCA01fuwVxq+AW+0f8AI3eJPu7v+Pxf
/iaavgWbbDt8ZeJF3L937Uv/AMTQB2B/1cn8P7z/ANmqRvvTfd+7XGN4EuFiZV8YeJP9Z937VH/8
TS/8IHdeZJ/xWXiT7v8Az8R//E0AO+GHy+CdNXb/ABXH/o5qtePv+RD1Bf8Aaj/9GLXHeBvCt1fe
FLGaPxTrdqrST/u7eVdq7ZG/2al8Z+ELy18IXlxN4t1q4WNl/czTR7W/eL/s0Adpr+nX2q6ebO0n
jiiaRWuN2795Gu35V2/d3VHrWiXV7rGkXljNbQf2bK0zKyt86srLt+X/AD8tZa+B75Y5v+K48RbV
/wCm0f8A8TT/APhB9Qabb/wnHiL5Y/8AnpH/APE0COzT7sO7/vqmttWNv+un/s1cevgnUtsP/Fbe
IF/7aR//ABNNbwTqXkszeNvEHyt/ej/+JoGdmT+8m/vbVpV+aSH/AHa8v8WaTrXhnR5NQh8YaxcN
HNbr5czR7WVpNv8Adr1Bf9ZD/u0CI/vRx/w/vKdIvyXG3/Py01fmjj/66U77v2j/AD/DQMm20U6i
gCP/AJeFb/pnXF3a/wDF1vD+5l3f2bdf8C+aOu0/5bL/ALtcfe/8lU8Pt/1Dbr/0KOgk6wruSVVO
Pm/75rKuvFXh6zu57e51rT4Zo/laOS4VWWtVm2xzbv71cZ4a0jTdR1vxXJd6dazyLqjLumhVm/1c
dAzVXxt4V3Q/8VBpvyr/AM/C01fG3hfy1/4qDTf9Zu/4+F/vVf8A+EX0L5f+JFp//gLHSL4Z0Hb/
AMgXT/vf8+sf/wATQMqSeNvC+2X/AIqHTdrL/wA/C1J/wmXhldkja/pu3b977QtWD4b0FQ//ABJd
P+X/AKdY/wD4mnf8I7oe7aNH0/7u7/j1j/8AiaBFEeOPDG2L/ioNN+9z/pS0v/CbeF9sn/FQab97
/n6Wpv8AhGdDbyW/snT23N/Fax//ABNOk8O6D5cjf2Lpv3tv/HrH/wDE0AV/+E48K+Y3/FRaX93/
AJ+lpY/GXhmRo/8AioNL3bf+fqOrP/CN6D5ki/2Lpv3f+fWP/wCJpi+GdB/dK2i6WzMv/PnH/wDE
0AQ/8Jh4aZfl17Td3mf8/S/3qc3jDw3tl/4n2m/d/wCfpae3hvQVj3Noel8ybf8Ajzj/AL3+7St4
X8OyearaHpf/AICx/wDxNAEaeMfDMkq7fEGl/d/5+o6d/wAJd4cwv/E+037+3/j6jp3/AAinh3fG
v9g6Z8q/L/osdMTwj4d2x/8AEh0373/PrHQA5/FXh+RZFXXtN3f9fUf/AMVTv+Eq8Pec3/E8037v
/P1H83/j1RP4U8OhZd2g6b97/n1X/wCJoPhDwz5jf8SDTfu/8+q0DH/8JR4f8yH/AInml/8AgVH/
APFUv/CV+H2Hy69pefM/5+o//iqjXwf4b/df8SHTfu/8+q01fCPhvYzNoWmbvM2/8e6/3qBEreLv
DbNIv9uab93/AJ+o/wD4qnf8JV4e8yNv7e037v8Az9R//FUw+DvDTb/+JFpf/gKtJ/wh/hvzlX+w
NN27f+fdaBCf8JR4fjihVtc03/WfxXUf/wAVUU/iPQZo7jbrGmsu5Wb/AEpfm/8AHqf/AMIb4XZY
/wDin9N+Zv8An3WmS+CfC/lzf8U/pf8A4DrQUW18RaI07Mur2LL5f3vtC1H/AMJLoK+Rv1rT1Yfe
/wBIjpjeCfDHnf8AIB037v8Az6rUCeB/C7fZ5G8P6Xub73+ir/doEW28RaOyyR/2xY7vM+79oX+9
Uq6/o8k88Y1fT2+X7v2hf/iqz28C+E9jM3hrS/v/AC/6KtH/AAgPg/zHX/hGdL+Vf+fVaAMT4dax
psPhTT4XvLWFvMuNytcLu/1zVN431Sxm8A3yx6haySbl+VZl3N++Ws/wF4O8Oah4Tsbm80DTZpHa
bc0tvGzMPMbbUnjPwd4bsfBt9dW+gabHcKVVZFtVVv8AWLQM7L+2NN8mbdqVn/s/6Qv92pv7W0vz
N39oWf3dv/HwtYq+BfCflyf8UzpPy/d/0OP+7U3/AAgfhHzG/wCKZ0n7v/PnH/8AE0AaaaxpeIv+
JhZ/9/lpjaxpaxs39pWvzSfwzLWavgXwpti/4pvSV3fe/wBDj/8AiaRvA/hXym2+G9J+WT/n1j/+
JoAw/iZqWn3HhSRYr63mZrq12xxzK2794td6v+uh/wCubf8AstYH/CE+FY5nZPD2lq0a7lZbVdy1
vLu8yD5v+WdACIqtGvy/8tP++akk+5P/ALtRxt+7j/i/efep/af/AD/DQIftoqTdRQMiG7zl6bdl
cZd7v+FpeH/7v9l3X/oUddp/y2/4D96uRuVZfilofy/8wu63f9/I6AOq/hmX/arl/Bi/8TXxd83/
ADFm/wDRa11X8Mn8PzVyngn/AJCXiz+L/icSf+i1oJOvVdu3/ZprLtVV/wBqpB/DTZN3y7f71AET
7dk9P+bzl/3aa3/Lb5qPl+0L/e8ugZCu7y7X/epX/wBTLtb/AJafxU+Nf3cO37tOZf3cn+01Axv/
AC2m3f8APOiFtywfN/D/AN9U5o18yT/aWmxqyrB91tq0EkbN+7+b/nt/7NU33fNb/Zpvl7o/+2m6
l2/NP/d20FDz/wAfC/7tNX7sf3fvU7/lsvy/w00N8se3avzUAD/6uTb/AHqd/wAtG+992o2bas27
+9Tt376T/doEOVduz5V+7Uf/ACx+7/y0/wDZqcvy+Tu/u00t+7+7t/ef+zUDHSL8s3+0tOH+sX73
3aazf675v4aUH98n+5QIZ8xWH/rpSPt8ufcP4qRf9Xb/AO9Sv/q5/wDe/ioAlb/XN/u1DF/q7X/P
8NS/8vH/AGz+9SR/6uGgZHJt8lvm/wCWlOb703+7TZNrQt97/WU6T71x/wBc/wD4qgDk/hk27wPp
bbm+b7R/6OapPiA23wFebW3fvI/+BfvFqH4ZbW8D6T95v+Pj5m/67NT/AIibW8BXX7vd/pEP/o5f
moA6kN+5m+6v+9/u1J/y2b5v+WdRrt8mbb/eqRm/fMu3/lnQIav3YPl/76oXd5UmP+en/s1NgbdH
bsv8S0N80Mm1V/1n/s1Ax7bvMl+7t20xf9bb/d/1f/xNSN/y2/u7aFX5of8AZWgREnzQptP/AC0/
75pX/wBXdf5/hpyqvkx/71NZfluP8/w0DJt3+1RRtX/nmtFAB/y2/wCA1yN78vxS0P8A7Bd1/wCj
I667b+83f7Ncfc/8lS0NWZv+QXdbf+/kdAHXbW8uT/e/irlPBK/8TLxd/wBhiT/0WtdX91ZP96uR
8DN/p3i7/sMSf+grQSdpUcjbVX/ep2794q/7NQ7t0cbf9NKAHu3yS/7NKzfvv+A1E/3br+H/APZp
5/4+FX/pnQMIv9XDTm+63+9TY/8AVw0j/NHKP9qgB7fek+X+Gmw7fLh/3adt/eN83ystIv8Ayy+V
fu0CA5Vef+elI2399838NDN8n3v+WlEnzLN/u0DHf8tl/wB2movyR7v4Wp3/AC2j/wB2mr/q4/8A
e/ioAay/LN/vVI3+skbd/DTW3bZP96kkb95J82NsdACR/wDLv8u35aay/wCj/wDbb/2alVvmgVt2
7bTNv7lf+u3/ALNQMc33rj/dqT/ltH838P3ahZV3XTbv4f8Avn5alX/Xx/7h/wDZaAGLuWOFW/vU
N80dxu/vUK37mH73zNQzfu7j/eoAkb/j4b/rnTV+7bs23/K0N/x8N/1z/wCA1DFJujs23feX/wBl
oAkb/Ut/10/9mp0n/Lx/u1G3zQt8u799/wCzU5/vXH8Py0Acn8MG/wCKH0n/ALeP/RzVJ8QF/wCK
FuP4v9Ih/wDRy1X+GUn/ABQ+jr97d9obd/22apPiF83gG4+X/l6h/wDRy0Adc3+pmbbTmX99J/1z
qozMtvc/Nt2t/F/wGrA/4+pP7vlrQII84td33tv/ALLSMu6Fl+b/AFn/ALNQu3db/N/D8tCt+5b+
L95/7NQMSbdtudv/ADz+Wnxf8u+f+ef/AMTSN96f7w+WnJ/rIlxj93QIRf8AVx/9dKbLu8m4oX/V
x/Mv+soflLqgZLiijb/tUUAL/wAtvvfw1yNwv/F0NF/u/wBl3Xzf9tI665v+Pj738P3a424b/i7G
iqrf8we4/h/6aR0Adc27y5P96uR8Cf8AH94w/wCw1N/6Ctdczbopv97bXI+BF/0zxkv/AFGpv/QV
oA7JW+aP5v4ajXd5cf8A10qT5t0f+7Tf4I/+ulAgf5kl3Lij/l5/4DQ43LKu3rS/8vH/AGzoGMj/
ANXb0L8wm/66UL8qw/xUn3ll2/3/AP4mgCVvvSfL/DTk/g/3aj/5aSf7tC/LJCv+zQIG/wBWu7+9
SHpPSr9xdv8Az0o/57fNQA5f9cv+7TVX93H8v8VO+Xzl/wB2o42/cw/e+9QMdI22ORv9qht3mSf3
fLof5o5P96ms376Zf+ma/wDs1Ahq/wCst2/2WqNZN0PzN/y22/8Aj1QaleLpemS3zKzLa28kjL/e
2rurg7q5vre/XT72+1RdduZFazt7WVVt2X+L+H7q/Nu3f+zUDPRZF/4+v93/ANlqb5fOVv8ApnWJ
ol9cXun3f23Z9qt5Gt5mj+6zL/EtY/ju8aC88PRi/u7KO5u2jma2kZW8vy2Zvu/7q/8AfVAHWq26
O32/3qQ/6u5X/pp/8TXK+Cbm4uor6Rbya6037ay2MlxJumWPb827/Z3btu75ttdXJH/o9wqs33qA
HN/x9Sf9c6bF8y2bfxbf/ZamZf30n/XOoY1+Wz/2V/8AZaABvlh/vfvv/ZqWTg3X/XP/ANlpPm8v
/ttu/wDHqWTpddv3f/stMDkPhc27wLpP+7cf+jmqT4hN/wAUDcMv3vtEO3/v8tN+GC/8UPpO1tyr
9o/h2/8ALZqk+IS/8UJJ8v8Ay9W/3v8ArstIDpl/1V1u/wCen8X+6tS/8vUjbv8AlnVO78xbG/aF
FaTJ2rI21WbbXMad4k1uc6XJNa2Mkd/dNFut2k/1e1tsi7v91v8AgO2gZ2i/8uuPu7f/AGWm7tsb
fe/1n8P+9XOS+PvClnKlvc69YxzRM0ci7vutTG+I3g7bt/4SKz3eZ/e/2qBHUN8rXDf7NIv+th+X
5vL/APia5hviN4P8yZf+EisfmX/npVbUfil4P063F1/bENwEXb5du26Q/Mv8NAjrlb5Ifm/5af8A
xVLI37u4/wBmszRNc03xBpsF5pl3DdQ+Z95G+6391v8AarTkX93dbaALH/AqKKKBkfy/aP8AtnXH
y/8AJWtH/wCwPcf+jI67L/lt/D92uJk/5K1pO7739izf+jFoA7Jv9XJu/wCelcj4F/4/PGX8X/E6
m/8AQVrrW3NG/wD10Xb/AN9VyHgb/j+8ZfM23+2pv/QVoEdov+sX5v4aav8Aq4/96nL/AKyP7v3a
b/DH/vUDB/uzfL/9lTl/13/AajkX93N/tU7/AJeP+2dADV+7b7v8/LR/BJ83/LSiH/Vwf7v8VN3f
u5P+ulAEn/LST/dpVHzRf7tNP+sk/vbf/iqf/FH/ALtAhv8ACvzf8tKbJ924+b/O2nfwr/10ob/l
tQA7/lsv+7UKKvlw/e+9U3/LZf8AdqPd8sPzfxf99UDE+6s3y/8ALSnt/rJOn3f/AIqmt80cn8X7
ylZcvLx/yz2/+hUCK93ax3tv9mnXdDNE0ci/3lZfu1xTeGdUWG4haG1vZpZF26pNdSLNHtb5fl2/
Lt/2W+b5v71dyqt50H/XNvmp67vLX7v+s/8AZqBmbpGl/wBm6dLbPM1xIzNJNMy8ySN95v8A7Gsj
W7HWZPGOmalZ2MN1b2NrMqq1x5beZJtX+7/dX/x6unl27bj5d3y/Mv8Ae+WpF/4+F/650COf8N6H
JpSXk87x/ar+8a6mWMfLHuXbtX/vn71bkn+pm/3qcv8Aq7f5f4qbIy+TN/vUDJtv75v92o1X/j3/
ANlf/Zac3+uk/wCudNVl/cf7tAhrfLD93b++/wDZqJPuXX/XP/2Wnbt0fyru/ef+zUP924/3f/Za
BnH/AAw2/wDCD6T937tx8u7/AKbNUnxA+bwLJ97/AI/Lf/0oWm/C3/kQ9L/vbZv/AEc1TfEL/kSZ
P+vy3/8AShaAOidfOhvI23bWbbWP4e8NDRIorea+kvPssAhtvMjVfKj/AOA/xf7VbYVdk/zFd0n3
mqVv9dI3+zQIpLp9jKYC1paszLubMK/NSf2bY+Xuaztf9Z97yV/vVchVdsPy/wANCqyx/wB395QM
ptpth+//ANBtflX5f3K1X1Dwzomq25tb3TLaSFwrFfL252tu/hrUkX/j4/3aco/0iPj/AJZ0CKll
Z29nZwQ2lvHbQxt8sca7VqzJ/q5vu01V/dw/L/y0pG+5dfLt9/8AgP3qBluiiigCIr+/3f8ATOuM
k/5K5o//AGBZv/Ri12e7/SNv/TOuMZm/4Wxpf/YFm/8ARi0COvPzLJu3L8//AMTXKeCP+Prxhtb/
AJjU3/oK11y/vEb/AK6VyPgb/j78YfN/zGpv/QVoA7BV/eR/7tNb5RGv/TSnL/rI/wDdqP8Ahj/6
6UDHOv7uZv71Sbf3n/AaYSf3vNP+Xzv9rbQIhVW22+75v/2aavSb/rtT0G5Lf/P8NMb/AFbf9dKA
Jvm8yT/do/ij/wB2m7v3k3zfw07+KP8A3aAGs37tfl/5af8As1Nk+7NQu3Yv/XRv/QqXZzP/ALVA
Dv8Aluv/AFzpgbKQt/tVJt/fK3+zUf8ADb/71AAdvlyf9dP4akb/AFkmV/hpvzbZNvXzKGX95N/u
0AC/ej/3aj2/uV/67f8As1SK3zQ/N/DUa7vJXb/z0/8AZqBjmXcsy07b/pCt/wBM6Y7bRP8AeqXd
++Vf9mgCNVVo4dv8LUSLuim/3qI/9XD8tDbtsn+9QA5l/fSNu/5Z1BF920X/AGf4al+b7RMrfd8t
f/ZqjiVlWz+b7q/+y0CJPm8v/tp/7NRL/q7rt8v/ALLTZCwjXH/PZf8A0Knv9y4+n/stAHHfC7/k
RdJ/3Zv/AEc1WPiB/wAiVJtb/l8t/wD0oWj4af8AIh6P/wBc5F/8iNSfEBv+KKfb/wA/lv8A+lC0
DOn3fLPu/hkqT700nzfw1F/BPu/56VL/AMtJG/2aBCR/8sMfd20n/LP/ALaf+zUL96D733aP+WX/
AG0/9moGK3ytO3+zT9376Nf9mmt/y2/3ad/y8L/u0CI41/dx/wC9uofd5Vxj/gNCKyxx/Lu+aj+G
4/h+agCb/vmiiigZH8v2n/tnXGyf8la0dW/6A83/AKMWuy2/6Ru/2a4+f/krmk7f+gPN/wCjFoA6
5l3RyLu2/vK5DwT8134yXd/zGpv/AEWtddKD5Mn/AF0rkfBkirdeMdz/AHdYmb/d+VaBHYr8ska/
9M6b/BHub/lpTl+Zo2+7+7qKP5YoV+7+8+7QA92Vo5vm/wDsflqT/lt97+Go5N2242t/nbTt377b
u/5Z0ANVflt91NZV8uT5tv7ynKu5bem/djk/66UDHscSS7tv3KVW+aH/AHaG/wBZJ/u0KvzQ/N/D
QINvyLt/56UF+JV2t8tN2ttX+L95/wCzUOvE/wDF/s0ASbv3yr/s7qjjb93D/tNUn/Lwv+7Ua/LH
Du+9uoGEm1o5Pvfe/hpzf6yT/d/+KprfKsn+1JSuFLzf9c//AIqgQi/6yH/dpq/6lf8Arp/7NTxx
JAv+zSL/AKtf+un/ALNQMU9J89Kf/wAtl/651HM37ub/AHakH+uX/rnQIgjDLHB/vf8AxVLJ/q5v
96jdu+z7f73/ALK1Of5o5tvzfNQMUbvtEn93YtMjZttnn+783/fNSbv9IkX/AGaYrblt/m/h/h/3
aBCNtaH72799/wCzU6TdtuNv93/2Wm7f3PzfN++/9mpXXb9qb+Jl/wDZaAOU+GckkngjSWZV+ZZv
/RjUvxAb/ihpfm/5erf/ANKFpPhou3wPpKru2+XJ97/ro1O+IG7/AIQeXay/8fVv/wClC0DOk3My
XX3vlk/+JqxuXzpP92oH+aK4+b/lp/D2+7Uv3ZJf+udADV2lrXd95V/9loTasP3dv777v/AqSNdz
WzbNu2P/AL5pV3ND83/Pb/2agQ+T7s/+7Srt86P/AK50xv8Al53fd20u7/SI1/6Z0ANRv3cP+038
VOk/1NxUa7vLt/vf6z/4qkk/1VztX+L/AOJoGXaKbRQA3/lt/wABrjZF2/FrS/m/5g83/oxa7L/l
t/wGuPmX/i7Gm/3f7Hk/9GLQSdZ95JP+ulecabr7eGta8T295oesXH2jUpJ45LWz8xWjZV/i/wCA
16N83kv8y/6z/wBmpzbd0/b5fvUDOPX4h2+5W/4R3xIu1dvzae1MX4hW+2NW8O+Ivlbd82ntXbKv
7yP/AHajX7sf+9QM41viFbtHNu8P+IF3f3tNanL8RLPzvm0HxEv7v739myV2UnzRzLTvl87/AGtv
3qAOGi+JFizIraD4iTZ/F/ZclSt8RNPaNv8AiT+Ivvbtv9lzf/E12S/MsNH/ACzkX/aoA45viNpu
6Rv7F8QfMv8A0CZv/iacvxG0/cn/ABJ/EXyr83/Epm/+Jrr2/wBZN/u0v/LSL/doEcYvxCsVjX/i
T+Iv9Z/0CZv73+7Tm+IGnssy/wBj+Il3/wDUJm/+Jrrl2+Wv/XT/ANmob/l42/L/APs0DOV/4WBp
/nK39j+Ivu7f+QTN/wDE1HH8QLFY41XR/EXy/wDUJm/+JrsPm+0L/d8v/vmmIv7uD5f4qBHInx/Y
7XX+x/EXL7v+QTNTm+IVh5j/APEo8RfMv/QJm+WuuZl2Pub+OkZv3ky/7NAHJ/8ACxNP3J/xJfEX
yr/0C5Kb/wALC0/y1/4kviL727/kFyV16t80X93y6Rf9Wv8A10/9moGcjJ8RNOXzN2k+IF3L95tL
k+Wkb4jaX9oVv7N15vl2/Lpslda3y/aP8/w1J/y8Ku7/AJZ0AcS3xM0eNYv9B1xlVv8AoGyUN8Tt
D2yK1nrXzN97+z5K7OP5o4O/zf8AxVLI22OT+L5qBHF/8LQ0PzJGWz1r5l/6B8lRQ/E7Rdttus9Y
XbH8y/2bJXd/8tpP92mqv+ob+6tAHEr8TNEWPb9l1r/Wbv8AkGyf3qdJ8TtFbzl+x618y/8AQNkr
st37v5m/5bf+zU6T/l4+b+GgZ5X4D+IGj6f4R021mt9UaSGNlby7GSRfvN/Eq0zxp490nUPCT2lv
b6ksn2iFt01jIq7VmVvvMtdb8Nv+RF0bn/ljJ/wL95SfEPd/whEv3f8Aj6t/97/XL/49QBV/4WXo
OJV+z6tzJu/5Bs3/AMTT2+J2grNI3k6t93739mzfL/47XYPu8mb+9up5OJH/AOudAHGxfEvw/uiX
Zqnyr95tPm+b/wAdprfEvw+yMPJ1bKybtv8AZ83/AMTXZxci3b/Zob/V/wDbT7v/AAKgDkB8RvDp
cIWvkadlhj82wmjXc3yqu5lrsV2+ZH/u1x/xH/5Fxf8AsJWP/o5a7L/lsv8Au0AQqqqtv/vU5l/d
zfLu3N92hW/dw/N95qRmXy7j/eoAs0UUUEkPy/aP9ry647WtL8RN4osNc0OOwlZbFrZo7yRl+827
d8tdntXzN3zfdqGPasVr83/2Xy0DOR+1fEDyWVtN8P8A+s+99qk2/wDoNEl58QP9I/4lOgt8v/P5
J/8AE11jf6mTdt/13/s1OdV3XG7+796gDlftXj5ZFZdL0Hd5f/P1J/8AE1DHffERl/5Augqu75f9
Kk+b/wAdrtFXbJH/ALtC7fLj/wB6gZxcl58Qljk26PoPzN83+mSf/E1Mt98QvMbdouh/d/5/JP8A
4muqfb5dx/vVIP8Aj4+7/wAs/vUAcWt98Qtsf/Ej0P8A2f8ATJP/AImm/wBofERlZW0XQfvfN/pk
n/xNdqirtgxSfeST5f8AlpQBx7XnxE3N/wASfQfu/N/pkn/xNOjvPiJuj3aLoKrt/wCf6T/4muub
b50y/N92nbV8yH/doA4v7d8RFVf+JLoPzN/z/Sf/ABNK2ofENd//ABJdD/2v9Ok/+JrsV+ZV3f8A
PSiRtq3Hzbf/ANmgDj/t3xC87/kB6Du2/wDP9J/8TSJqHxA2xbdD0P8A8GDfN/47XZr/AMfC/wDX
P7tRJ80dvt3fe/8AZWoA5JtQ8feXNu0HRfvfL/xMG/8AiacdQ8fFpt2g6O3y/Lt1Bv8A4musdv3c
m3/npSs21p/lX5VoA5JdQ8fN5bf8I/orfL93+0G/+Jo/tLx4q/8AIu6T8rf9BJv73/XOuvV9zRL/
AHo91J92Nfvf6ygDjn1Lx5tmX/hHNJHy/wDQSb+7/u0q6p4885f+Kc0nd5f3f7Sb/wCJrsJD+7n9
qd/y8L/1zoA4uPUvHyxx/wDFO6T/ALP/ABMm/wDiac+pePGjb/im9J+9u/5CTf8AxNdcn+rt1b72
7+GiT5oZtv8Az0oA5P8Atbx95jL/AMIzpe7b83/Ey/8AsajXVPH26L/imdJ+Vfl/4mX/ANjXabf3
0ny/w/epqrt8j5furQI43+0vHnl7f+Eb0v5ZP4dQ/wDsaRtX8fNHL/xTOl8r83/Ey+7/AOO117f6
tfl/5bf+zU6Ta32xdv8AD/7LQM8t8D6l40h8I6Stl4dsZ7fyW8uSS+2s3zfxLtpPGmpeM5vCcq3/
AIcsIbfzoW8yPUNzbvOXb/D/AHq634cL/wAULof3v+Pdv/Qqj+I3/IiSf9fVv/6OWgCFda8efvFk
8H2O1m/h1Rf/AImpF1jxx5kjN4Rs2bb/ANBRf/ia0fFmpXGk+FNX1C3lWOa2XzEZl3Lu+WqGi6lq
zeJWsHvotTtRY+ZNcRwqvkzbvlXcvytu+b/vmgBq6546/d/8Ufa/+DRfm/8AHaj/ALc8cbdv/CG2
/wDrPvf2pH/8TXZRfMsHb5aarN5f3v8Alp/7NQB55rf/AAmWvwR2M3ha3tIftlvNNKupRttWORW+
7/wGvR9264j+7t202T7tx/u0qj/SI/m/5Z/doEMVl8uH5v4qV1/dT/71MT/V2/zfxfeqRv8AV3Hz
fxUDLFFN7UUAQt/x9N/1zqOL/V2vzbv/ANmpv+Xpv+udQr92z+Xb/wDs0AOZV8lv+un/ALNSv0uP
723v/u0z/ljJu/57f+zVJKv/AB8f7tADht86P/rnUan93D/tSVIq/vI/m/5Z1Gv3If8ArpQIe23y
5fl/ip3/AC2Zv+mdMfKxzfe+9Tv+Wzf9c6ACP7kP+7TX/wBW3/XT+GkRcpAwZhSv/qW/i/ef+zUA
OZf3k3+7Qu1mh/3aST/lru/550qbd0O37u2gCIf6pfmb/XfxN/tU+Rl8ufcy03b8sf8A10/9mpz/
AHbj5qAHfL9oX5fm8uo4N32e33VJ/wAtvu/8s6bG37u320DGtu2Tfw/vPvUkn37n5f8AlnT9u5JP
+ulOZfmm+X7y0CGRtzb/AHd3l/8AxNMXcsce7/ntUq/ei/u+XSfejXd/z0oAR/8AV3H3m/8A2aX/
AJel+9/q6G+7cVJ/y2X/AHaAI4/ljt6bJ8sU3/XSnD7lv/vUkir5Un+1JQA9v9ZJj/nn96ooflW2
+Rv9X/3zUrf6yT+7tpqruaBtu35aBkf/ACxXd8v77/2anSf8vm3723/2WlwfKww/5bf+zUpVf3/y
r833qAOS+HF1CvgTQ1M0fy27bt0n+1UHxEuLeTwV5fnR+Y15b/db/psvzVd/4V14N875vDuntuXc
3+j0sXgHwlC0Ey+HNNEnmZVlgX/vqgCHxxBe3eirZ22n3F7HNew/aI49vywqys33m/i20mg6Oy+K
r7VYNO/suyktVh+ysqq00m5m8xlX7tdWy/u5vu/6ylZcyzfd/wBX/wDFUCHJuzB8/wDD+dM+9H93
/lp/7NTl+9b/AO7R/wAs1/i/ef8As1AwZf8AX7vu7acv/HxH/wBc6aW5uKep/fL/ANc6BEUf+rh+
b+KnSf6ub5v4qavzLD93738NOdf3c3+9QMm/4E1FOooAr/8AL7/2zpq/dtf8/wANFFAiFf8Aj3uP
+u3/ALNVmX7s/wDu0UUAPX70f+7Qv3V/3qKKBAv/AC0/3qa33m/3aKKCgX7sP+f4ad2b/rpRRQIJ
v9XJ/u0i/wCsi/3aKKAIm+7H/wBdKRvv3X/Af/QaKKBki/8AH8//AFzX/wBCalb7sf8AvUUUCGfw
P/11ob/j4n/3FoooAcnWL/rnT1/1X/AqKKBDW/5bUv8Ay8/9s6KKBiR/8s6iX7k3/XaiigCc/wCs
b/rnSR/8sv8AdoooAji+4f8ArtT/APlpNRRQArf66P6NTB9y3/3qKKABfuzf71H/AC2uP+ua/wDs
1FFAxy/ei/3ajbpH/wBdqKKBkkn/AC2/3aF/10f/AFzoooJIYf8AUWv+9Uh+5cf71FFAFqiiigD/
2Q==
"/></p>
<p style="text-align: justify; margin-top: 6pt; margin-bottom: 6pt;"><span style="font-family: 'Arial';">The emf generated is</span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">solution- <span style="font-family: 'Arial';">  ε = Blv = 0.01 × 0.50 × 4V = 0.02 V.</span></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">2</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Medium</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">a.<span style="font-family: 'Arial';"> 0.01 V </span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">b. <span style="font-family: 'Arial';">0.02 V</span></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">c.<span style="font-family: 'Arial';"> 0.03 V</span></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">d. <span style="font-family: 'Arial';">0.04 V.</span></p>
</td>
</tr>
</table>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<table class="a3">
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">4</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">Q.5. <span style="font-family: 'Arial';">Which of the following figures correctly depicts the Lenz&#039;s law ? The arrows show the movement of the labelled pole of a bar magnet into a closed circular loop and the arrows on the circle show the direction of the induced current.</span></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 0; margin-bottom: 0;">solution- <span style="font-family: 'Arial';"> When the induced current flows anticlockwise, it opposes the motion of N-pole of the magnet as per Lenz&#039;s law.</span></p>
<p style="margin-top: 0; margin-bottom: 0;"></p>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">4</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;">Hard</p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 6pt; margin-bottom: 6pt;">a.<img border="0" style="width: 224px; height: 141px;" src="
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACNAOADASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3gfdj
/wB6kHSX/eoX5UjHzfepW+7JQMd/y0/4DTVX5YaP+Wzf7tCt8sNAhvb+L/WU5vm8z/do7fe/5aUf
daSgY7/lov8Au1H96OP/AHqk/wCWi/7tN/hX/eoEDfKslO/5bf8AAaa33ZPmp3/LT/gNADV3bYaG
/wBW3+9QvSGm7vlb/eoAc33pP92hd26P5v4aG/1kn+7Qv3o9zfNtoATPyr/v0jf8tv8Ado/5Zr/1
0/8AZqG+bzl2/wANAx2798q/7NMB2pFu/vUv/LZf92o2mVVh8yRVbd/E1AyT+Fv96nN/rG/3ahWZ
ZFk8uRW/efwtUm799J97dtoAcq/6v/ZWgcRf9tP/AGamr/yy2/L8tH/LP/tp/wCzUADf8tv92nKv
75W/2aazbVmb+7Tv+Wy/7tADFUrHENv8VD/6ub/eoX/Vxfe+9SSt+5m3fL81AiRv9Y3+7TV/5Y1j
ah4s8P6XMxvta0+BlX7sky7lrUtLiO8tba4gk3RSLuVv7y0AS7vlj+b+KnN8yyUD7sfzfxUN92Sg
B3/LT/gNR/8APH5qd/y2b/doXpDQIbu/2v8AlpUjf8tPl/hqP+D/ALaU6Rfll/3aAHf8tF/3aj+b
bHu/vVJ/y2X/AHajX5VX5V+9QA5vuyfNR/y2/wCA0NJtWT/ep2799/wGgBv/ADx/hpv8Lbv+elKN
37r5aT+Bvl/5aUAObbukX/ZoX70fzbvlob/WSf7tJu2snzL92gYn/LNf+ulef+IvijaWeoy6R4es
5te1Zvl8m3/1cf8AvNWXqmuav8Q9bm8OeF7p7TRrZmXUNVj/AIv+mcddz4e8J6V4V0t7HSbVY12/
vJG/1kzf3magDiv+EX+IvilxJr3iWPRYWX/j001fmX/eb/7KnR/BLQJvKbUdS1m9f+Lzrr+KvUNv
75f92mhflh/3qAPMf+FI6DCsklhqmtWkm75Wjuvu/wDjtRz+FviL4bDSaF4nGrxIvNrqC/Nt/wBl
q9Qb/Vt/10/hqRt26T/doA8etvjdFp16dP8AE+hXlheQ/LJ5Tb//AB1q7jw/4+8NeJ2Fvpmoq85O
7yGjZZP++a5n4seAB4n0hNU06LOqWcTHbt+aeP8Au/7392ua8DXNx8ML+10nX7a3js9WZZIdSjX7
rf8APORqBnuEn3Z/9371Sf8ALRfmb7tRs3yzfxf3arW+qWN1qc9jDeQvdW6K00KtuaP/AHqBFh3W
OFGkYqq/MzM33f8Aery74qeHY/E3hW48Q6RqUsjWy+ZthuGaGWNfvfLu27q6/W/CieJLyJtR1G6m
0tV/5BsbeXHI396Rl+Zv92tptPshpkumpbotpt8ryY12rt2/d+WgR4F8IfhqNXlXxHrUSmxj+a1h
k/5bN/eb/Z/9Cr6Gj27bf/dpLe3htY1gt41jijjVY41+VVWnjrD82KAHL8yxtu/iob7slC/dj/3q
P+en+9QA7/lo3y/w0wdYvlp/zeY3y/Ltpqr/AKugA7fe/wCWlDfdk+X+Gm/NtX/rpTpPuyfe+7/D
QAN/rl+X+Gj+GP8A3qP+Wy/7tCr8sf8AvUAN2/LJ/vVJ/wAtv+A01vuyf71H/LZv92gBF+7DSfwN
8v8Ay0oT5lh/i/2qP4G2ru/eUDFb70vb5a88+KGu3cdrZeFtGGdX1r9yu3/llD/E1eifxSfw/L96
vK/BCt4n+KfiLxNJ89rYf8S2x/2dv3v8/wC1QB2/hbw5Y+E/D1ppNkPlj/1kn8Ukn8TNW23/AC2+
9Qvyxr/vUj/cnoES/wDLRf8AdqNW+WGnf8tl/wB2mr9yH/eoAG/1bf71O/5aSf7tR/8ALNv+ulQX
t5b6fDc3V3cxwQxx/NJI21VoAs/88fm/hrmPGFhouuaN/YOrSwRvev5dqGb5/M/hZa3re4j1LTYL
i0nzHPDujmX+6y/K1YeieDdM0eY6hJ5l/qkj/vL68bzJPvfw/wB3/gNAHF+DLnVdc0S+8JanqlxY
ato8/lzyQbfMlt/4fm/9m/3a9G0Tw/pnh63W10u1WCNhukbHzSN/eZv4mrz7xow8K/FPQfEiCNbf
Uf8AiX3n8O7+6zf5/hr1Zf8AXL838NBQxG/dxH+81K33ZNv96mp/q4drfxU5v9XJ/vUCHf8ALRv9
2o1b5rf/AGlqRl/eSNt/hpsf/LFvl+7QMcv+rjob7sn+9Qv3Y/8Aeob/AFcn+9QSH/LRv92j/nnT
v+Wjf7tN/wCeNABt+X/gVDf8tPmaj+H/ALaUN0moAX/lsv3vu0m3/V/71O+9Ivzfw01fux/71AAy
/wCso/5bN/u0M21ZPu/eo/5bN/u0AIv/ACy+993+7SN/q2/66UK27yfm+9/49R/yzb/rpQBBfXH2
SzvLja37qFpP++Vrz74HQrH4BjuP4rm6mkb/AL6216DqMJubC9t1+9NbtGv/AAJWrgPgdIrfD23h
3fNb3E0bf99UAejL/q1/3qG+ZZvmoX/Vr/vUM3+u+agod/y02/N92s/VNWsdG0z7fqV1HbW0bfNJ
JTZ9d0221u10yW9jS+uVbyrf+Jh/e/8AHay/GHhK38Z6JFpt5d3EEPmeY32fb8zbfl3bqBF3RPEm
k+JLSW40m8juY45FVmVW+VqoXfgyz1XXZdS1Sa4v1j2tb2czf6PE23/nn/F/wKrXhbwzZ+E/DsOl
WckjpFIzM8n3pGZvvNW827dJ/u0CI4Y1hWGNV2qse35aFVvLX/rp/wCzVJ826P8A3aaq/u1/66UA
eb/Gy3b/AIQZr6ONfMsr6G4Vv/Ha9DtZPOhgmP3nhVq8++N0zL8PZrdfvXV5DCq/3vm3f+y16DZR
tHb26twywKrLQA+Ld5MO5f4qdJ/q5P8Aep3Tyx/tU1vmjk3fd3UDBvvSfL/DTY/+Xf8A3acy/vpG
/wBmhf8AljQMcv3Y6G+7J838VCrtWP8A3qG+7J/vUEjv4m/3aav/ACz+Wj/loy/7NC7v3X3vu0AN
ZW2/3f3lOb7s1N+6q/8AXSj+KagCT/lov+7TV3bY/wDep3/LRf8AdqP+GP8A3qAHN92T/eoZf3jf
7tDfdk/3qG/1jf7tADU3bYfmp3Zv+ulCt/q/mX5qP4P+2lAA33pf92vKPhx/xTvxB8UeE3+SNpvt
1ru/ut/+0v8A3zXqF3cW9pDPcXMyRQqvzSSNtVa8m8YX0N1c2HxD8NRyT/2PN9num8tlW4t/4mX+
8q7vvUDPTdX17TtD09brUryO2j3bV3H5mb+6q/xVKzrqOlSmGWSNJ4/lkj+WRVZfvfN/FXPaFpPh
7WrmLxbbZv5rr95DLdP5n2df7sa/8s661tzLN92gRj6H4Y0zw6XWxt2M0i7prqVt80rf7TNWwu3b
DTv+W3/Aaau7y4floGH/ACzb/rpTm+9J/u0xv9U3y/8ALSl3fNJ/u0CHL96P/dpv/LNfvfeoX/WQ
/wC7VHUtTs9H0ibUL+byreDdJIzUAeefEd117xr4Z8KQ7mb7UuoXW1vljjX+9Xqf/Lb/AIDXl/wz
srrXNQ1bx5qkbRzam3l2Kt/yzt1/z/47XqG799t/2aAGou1YVok/1cmN33qd/DH/AL1Nk/1cn+9Q
A7/lo3+7TV/5Y/L/AA07/lpIvzfdpq/eh/3aAD+GP/epzN8sn+9Qq/LH/vUP8scn+9QA7/lo33vu
01ekNO/5aMv+zTI1+WL+L5aAF7fw/wCso/57U37q/d/5aUN/y22tQBJ/y0X/AHaj/hj/AN6sjxB4
o0nw1Ak2p3ixbl/dxqN0kn+6v8VXdL1K31jS7PULJvMt7hfMjb/ZoGXD91/lX71H/LZv92mOv7uX
/ernPFXiLRtMVtOvlku7i7j2rYW6tJLMv+7/AA/71AGpf+INF0lVa+1SxtVX73mTKtZWm+OtD1nV
m0zSbpr+Rf3kk1vHuhiX/aavnXUvh5rcnjG10eGwa3k1FftEMck3mNDHu/5aN/s19G+DvClj4Q8P
x6dZr5jrJumm/imk/vNQIt614d03XbiB9StjcJbfvI4mkbyy3+0v3W/4FWg1rCY0hMS+T5TL5e35
dv8Ad21Zbbuk+X+GhfvR/L/DQM8P1g6r8HLi7n02P7R4b1FpPJiHW0n2tt/z/s12fw28dr4z0CVp
RHHqdsFW6T+98v8ArKm8ZfDbT/Gxhku9Sv7cwjbHHHLujX/gLfxVwFl8IPF3g/Vf7U8M6xY3EifL
5cytH5i/3WX7tAj3b/lt/wABpq/dh+WvMofitcaRKtv4x8PX+lXCrtaaGPzIW/2l/wAtWxbfFXwP
cRpt8QQrtb/lorL/AOhLQUdr82xvl/5aUN96bb/drjLn4p+CbWJjJ4it2+fP7tWk/wDQVrEm+Lba
tPLa+EvD19q0zfKszR+XCv8AvNQI9Fub61sbNby7mjht449zSSNtVa8nMt38XdajXy5IPBtpcbtz
Lta9k/8Aia07fwBrfiu9gvvHmpLNbp+8h0q0O2GP/eb+KvR7e1hs7OC3tY1hhjZVWNF27V/u0AOh
hjtreSGKPy4Y12qir8qrt/hqX5vOX5f4aR/9XP8Aep42+cq7fur/AN80CI4FZYYVbdu3UM22OZv9
qnD7sP3fvUNt8uT/AHqAHf8ALST5v4fu1D8rSW/+7U3/AC0b/dpv8UX+7QUOX7sf+9Qzfu2+b+Kh
fux7v71H8Mn+9QSO/wCWn/AaYv3Yv92l/wCWjf7tc74h8Xaf4cW2hnaSe+mX9zY2q+ZNN/ur/wCz
UAbsjwxxNK7Kqq25mZtqr/tVxtz4vvvEFzLp/g61W42ttm1Sdf8ARYf93/no3+7UMXhzWvFki3Pi
6X7Np27dHosD/L/22k/i/wB2p7rxG3h7xhbaD9jtY9HlhXy5IY9n2aRtyxq38O1trUAaOg+DbXSb
z+0L24l1TV5F+e+uvmZf9lV/hWufttQt/h5rtxp+pTeT4fvd15YzSfdhk/5aQ/8Asy11AvtSk8a/
2ehtxp8ditxJ+7bzNzMyqu7d/st/DTfFPh+HxJoDWbN5dwrLJazbd3kzL91qAG6Br11r8l1MNIuL
TTht+z3Fx8rXH+15f3lX/eraNlb/ANoG8FvF9o8vy/O2/Pt/u7qwPB2vSa9o0rXcPkalazfZ76H/
AJ5zLt3f8Bb71dQ3+sb/AHaBlNLSEXMVz5Uf2jy/K83b823723/dqx/yzb/rp/7NQv3ofu/dpx+4
P+un/s1ADW+Zpvvfdpy/6yP733aG+9J977tH/LSP733aAGr/AKtdv96msv8ArvlpyrujX/eof5RN
QMSSOOZ/LlVXVk+ZWXctYMngvwtcMkk3h7S3kk+8zWa/NXR/8tv+A1DH/q4Pvf8AAqBGFD4J8LW5
3QeHdLVlb5W+yruX/wAdrcW3jgjdIolSPb91flWn/wDLNv8Arp/7NSt96X5f4aAEX70P+7QPmiX5
v+Wn/s1OX70f+7TV+4vzf8tKAB/mWb5qd/y8L/u0jfdl5p/y+Zt/2aAIU/1cO7+9UUP2gfafO2Y8
792V/u/LU/8ADD8v8VDfdk/3qAHbv3ki/wCzTV/5Z/7tO/5aN/u0ij5ov92gYq/djprN8sn+9Qv3
Yflob/Vyf71BJJ/y0b/dqkmm2Q1AagtrD9saPy2uPL/ebf7u6uZ8f+O7LwhpcrJcW76syr9ns5Nz
NJ8391azvhv4t8ReM0n1DUNPs7TTU/d2/lq26ST+L7zfdoA9CZfl+7/FXFGytvE194rtbuOZI5fJ
t0LQtH8sa7lkVv8Arozf9812e5dq/e/1lYHiPxfpugoIXLXd/N8sNjbL5k0jf7v8P/AqBmb4J/tZ
ZtUvNfh8m8Ty7Vpm+7MsK/6xf9ltzNUNx4uvtcuP7P8ABtvHdtG22bUpvltYf93/AJ6N/u02Hw5r
Xi2VJ/Fkn2TT/vR6PbSfK3/XZv4v91flrsrS1t7K0tre0hjht4/lWONdqrQBheG/C0egvfX095c3
+p3zq11dSfL5m3+6q/Kq11H/AC0b/dqNv9XJ8zfeqT/lo3zfw0CGqv8Aqvlob/V/9tP/AGahf+WX
y7aP+Wf/AAKgBrN803+ytOX/AFkf+7Q3/LT5v4aF+8v+7QUHy7Y/96myfcmo/wCWcf8AvUN/y2oE
Sbv33/Aaj+XbDuanf8tv+A1X+bdatuXbu/u/7NAE38P/AG0/9mob703+7Qu7Y3/XSomX57ncvysv
8P8AFQBOv3o/92mr/q1/3qcv/LP/AHajVv3cfy/8tKBDmb5Zqd/y22/7NNb7s1H/AC8/9s6Bgv3Y
aQ/dfp/rKVfuw/LR/DJ8v8VAx3/LRl/2aE/5Zf7tO/iZv9mo1/5Y/wC7QBBeXkdlZPcy7vJhVpJN
q7vlVd1eXzeMvFfjsyWvgqwaw0xm2yaveLt3f7Ua16xKiiJUb5h71DGkcVn5ccapGoUKicAUEnIe
Ffhpo/h65a/uTJqmsMN0l7c/M27/AGV/hrr7S1t7OGKG1hWKFdzKsa7Vqdv9ZJ/u0L/yz/3aAM/V
7S9vtImg07UGsbiRsLceX5mz5v7rVR8PeEdL8N+dJbRtNeSfNNeXDeZNN/vNW6o+X/tpQx+WagB6
r83/AAGmr/yzp3/LT/gNRqfljoAc33JPm/ip3/LRv92oycxyf71SfxN/u0ANH/LHd96m/N5f/bT/
ANmp33WjxTTxH/20/wDZqABv+W33fu05f9ZH/u01j/rfalX/AFif9c6BiL/q4/4vmpC3yy9vmox+
7hH+1St/q5qAHf8ALb738NQr8y27bv8AO2ps/vm/6501G+WHigQ7b8v/AAKmsvzTfM33aM/u/wDt
p/7NTsHdJzQAKrbo/wDdpu1dsf8A10oX78R9Vpy/dj/3qAGt8q3FO2/6Ru/2aG+7JTv+Wn/AaAI1
+ZYaF/1cn+9R0WH/AHqTHyt/vUFD2/1kn+7TV+9D/u07/lpJ/u01R80PstAj/9k=
"/></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 6pt; margin-bottom: 6pt;">b.<img border="0" style="width: 230px; height: 133px;" src="
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACFAOYDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3hv8A
Vtt/vU4/6x/92m7l8tv96nN96T/doAav3o/lb7tH8K/71C/ej/3aF/1a/wC9QAM3+up3/LT/AIDT
Wb/WfNTv+Wn/AAGgBq/6uOm/djb/AHqFX5Yfl20N92T7v3v4qBkn8Tf7tCf8s/8Adpv/AC0k/wB2
j+KP/doEDbdv/Aqa3/Lal5wvX/WUkn3ZvvfdoGSL/rF/3aj/AIY/u/ep3/LZf+udNX7sfy/xf980
CBvuTf71OZV8xv8AdoZvkk/3qp6nqljo9pLfaldJbWyL80kjbV//AGqBlkdIKRpFWFmbbt8z+9/t
V5X/AMJ14p8ZzLbeCNH8mxX5f7Uv12r/ALyrUn/CpLzVtlx4p8V6pqM275ooW8uMf7tAHov9oaek
07fbrdW+XdumWrcNxDNIvlTRv8v8Lbq8/i+CvgqFZFNjcStt+9JdNuqtL8FNBjkVtJ1LVtMuNu5W
huN22gZ6Wu1o4/m3fNTVZZI3aMqyt/ErferxHxHrXjH4ZW8In8S2OtW025Y4bxdtwv8Atf3qr/B3
4ieWW8OaxL/rW3Wc0jfxf88//iaAPfP+Wn/Aajj2rHDTt375v92mr92H5loEH8LfN/FTm/1kn+7T
d22Nvm/i21S1DVrDSwWv7uC2WQrHH50iruZv4aBE011a2qpJc3MMSqv3ppFWsWPxt4dlv4tOt9Xt
7m8lk2rDbt5jfe/2a8W+MnghtM1Ox1HTftEsepy+X9nZmkZZv9nd/er0j4X/AA8TwdpSXl6kbaxc
7fMY/wDLFf8AnmtBR6HHu3yfd+9RTo/vyf71FAhPuxt/vUrZLOv+zSf8s2/3qG/1kn+7QIF+9H/u
03+Bdv8Az0p//LROv3aZ/wAs1/66UADf8tqk/i3f7NNZf9dTv4/+A0ANVvlj+Vvmpv8AC3+9RH9y
Ghv9W3+9QUSN95v92mj78X+7Q33pP92mr96H/doEH/LNf+ulOPSWmq26Nf4vm/8AZqG+7N/DQA5V
/fKv91aavyrH/vU5f9Yv+7TV+VYV/wBqgRmeIdesfD2iXep6hN5VvF97H3m/2V/2q840bw5qXxLv
Y/Eni1TDpGN2n6SrfKy9pJKXUgfiP8S306UZ8PeHjuuFVvlnuP4V/wA/3a9aVQrFV4VV+VVoKIba
3jtYYIYI1jhjXasartVaf/yzZf8App/7NTl/5Y03/lm3/XT/ANmoAczbWm/3ad/y2X/dob70v+7Q
v+uX/doEZ1/o+l6rCkd/Y2t2u7b++hVq4PX/AINeGb63nm0mFtKvg26GSF22q3+7/wDE16Wv+rj/
AN6o3+7Nu/vUDOD8CeL72bUrjwp4lXytfsk+9/Dcx/3lru5riKztUuJ5Y4oY13SSO21VWvNfiHY2
fiVnvvDt/C3ibQV+0L9nbc23d91q0NIs9I+JVnpfiG9kmnt1j2nTnk/cxTL97cv8VAHaadqFnqmn
reWFxHPbySfLJH8yt81Ytn4J0+DV5dW1GSbVdSHzR3F383kr/djX7q10UcawwLHHGqRqdqqq/Kq0
9/mMy9fl+7QIqTWdvdXNjNKiySW+6SFmX7rbdu6p4vmgjb5f9Z/7NUgXdNG33vlpsaqscf8A10oE
Pjb55Pu/eopi/M03++P5UUDHN/q/+2n/ALNTmb5pP92m7f3bf9dP/Zqd/FJ/u0ANVv3kf+7Qv3F+
X/lpTl+9H/F8tNVW8tf96gYN8vnNUn8f/Aajb7s3+1Un8f8AwGgkav3Yfmpu5drf71OVflh+amsv
7tt396gCT/lo/H8NN2/NF/u07/lpJ/u01f8Aln/u0AN/5Zr838X8NDf8tqP+Wa/d/wBZ/D/vU5m/
1vzUAG398rbf4axPFGsLoPhW+1Viu62haRf97a23/wAerd/5aL/u15n8cLho/hfNGu7dcXUMe3/g
W7/2WgZd+Emito/w9trib/j61FvtkzN/Fu+7/wCO7a73/ls3zfw1SsII7XS4baJVWOGNUVf7qqq1
d/5aN838NAEat/x7/wC1Tt37tv8Arp/7NSBOIP8AZpGX93/20oAdJ/y2+b+Gnf8ALRd392uZ8SeO
PD/ha7jt9Yvlt5p03Rr5bN8v+1trasryDVrGG8ty/kXEO6NmVkbDf+g0AVdQ8QaXp97ZWN1fRreX
UqrDbr8zt/wH+7/tUa3pKa5pstlJd3VvG0is/wBlk8tmX+7u/utVTQfCOl+Hwbi1iae8lf8AfXlw
3mTSf8Cat/d8s3+9QBS0vRtP0W3+x6bZw21uq/djXb/+1XnXgH/im/id4i8L7fLtbhV1K1X+7u27
l/8AHv8Ax2vVP+Wzf7teY61/ofx58KzKu0XemyW7L/u7moEemf8ALNv+un/s1DL+8l+992hf9X/w
L/2ahm+aVfm+7QMF+9D8275aai/u4/8ArpTl/wBZH/F8tEe1o1ZV/ioGMCtvm/3x/KipkX53+tFA
DP8Alm3/AF0/9mqRvvP/ALtNb/V/N/eobduk/wB2gQfxR/N/DTV/1a/71OX/AFkf8Xy0fwr/AL1A
gb/lpTm+9/wGmsv+sp3/AC0/4DQMav3Y/mob7rf71C/di+ZaG/1bf71Ag/ik/wB2hV+aP/dob70i
/wCzQu7dH/u0AC/6tdx2/NSP/q5aRfljX+H95Tm+5LQMFVfMX733a8z+OVvJN8MvOjb5rW8hm/8A
Ql/9mr07/lp/F92ue8X6QfEPg7UNKxmS5t2WPd/e2/L/AOPUCNKwlW60qGePawkWORW/vfKvzVf/
AIm/3a4T4U60usfDuxVx/pFkPsswb+Fl/wDsdtbs3irSY/EEeiQztPfyfejt42k8r3kZfu/8CoGb
DSLHHHJIyqqr8zNWVo/iTS9ekuk025+0rbSKskkY/d7m/ut/FS6z4fsfEFtbWupJJNbxyb/KWRlV
/l+6395a0La1hs7Vbe2hjihjbasca7VWgDjvFPww0PxZrf8AauoS3fnIsa7Y5flZV/h213MaqrKq
rtVVpsn/AC2+X+Gnf8tl/wB2gBrfdh/3qG+5N/vUyJGjhiWRlZg33ttK3+rm+b+KgCT/AJbN/u/9
815jrX+mfHTwnbr/AMumnzXDf7O7ctenf8tm/wB2vKfAbf8ACSfFLxF4oXc1nbKun2sjf7P3v/Qf
/HqBHqm3923/AF0/9mof703+7Th/qv8Atp/7NQ33pP8AdoGN+bzo/m+Xb92mR/6hP+un/s1S/wDL
SP8A3aav+rX7zfNQMRusn3vvj+VFSx/ek/3qKBDf4P8AgVO3fM9N/h/7aUH/AFknb5aAHL95f92m
7vlX/eoX7y/d+7TV+WOP/eoAX5j5uaf/ABf8B+7Ubf8ALb5qk/j/AOA0ANXpDQ3+rb/eoX/ljQ33
W/3qBA33pP8AdoX70f8Au0M3+s+b+GhfvR/7v3aADb8q/L/FTW/1c1DSLHGrM21d38TVz2pePPCu
ltLHe69Yxtu27Vk3N/47QB0f/Lb/AIDWHrvifS/DsED6hclZJD+7gjG6WZv9lf4qd4f8R2niaBrz
T47r7MvyxzTQ+Ws3+0v95aW38N6Tb6w+rJZxtfzt81xJ8zf8B3fd/wCA0DPL2nXwR43lkuoriDwx
4pXc27dG1nM397+63+f4a9S0Lw/pOg2zQaVaQwRlfmkUZaT/AGmb+Ko/E3h+x8TaBc6Xfxlo5T8r
L96Nv4WWvOtA8aXHw/v28K+NJiEhT/QtS2syyRfw7qAPX1/5ZdvlpG/1f3v4qytI8SaPrSwNpuqW
dz8v3Y5Mt/3zWmvzR/e3fvP/AGagY5v+W3+7Un/LRf8AdpvXzc0f8tv+A0EjV+aOP+H5qNvyyfN/
FQv3Ya5vxj4203wdp7TXj+Zcv8tvaR/6yZqCjM+JvittA0drCwbzNb1IeRYwqPm+b5WatPwP4Yj8
J+GdP0v5WmVWkuJF/wCWkjfe/wA/7Nc34H8K6lqGuy+M/Fsf/E1nX/RLX+G0j/8Aiq9ITpH827/2
agkF/wBX/wBtP/ZqdJ/y0/3aP4fl/vU2RmXzv935aAHL96P/AHaav+rj+b+KnK37yP8A3aj+6se1
v+WlBRLH9+T/AHqKSP78n+9RQIPux/7zU5v+Wny1Hu3R/wDbShpPmm+X5VWgRIv+sX/dpu792v8A
vUL/AKyPd/dqPd8sf+9QA5vuzVJ/E3+7UMkm1Zv9mqGueINL8O2jXmqXKW8OPl3H5pG/uqv8TUAa
af8ALL/drltR8feH9P1uDSJLvddSzLGxjXdHEzfd8xv4ax/M8S+Odg23Hh3Q2+78228uV/8Aaa1t
N4L0NvCtzoMFlHb203ysVP7zd/DJu/vfxUDOlkb/AF3zfw0fxR/7v3a840/x62k6c+jaxb3V34lt
G8j7PbQ7muF/hk/u7WX+Ku20q41C4s7aTUrNbS6ZW3QpL5nl/wB3c1AjhfGl1YeNoJPDmmaZJq1z
HJ811G3lw2bbvveZ/E3+yteV+APhZc+IfENydTjkj0zTpmjuGX/ltIrf6ta+loIILe1SO3iWFWl3
eWq7fm3fNT4LaC2ilSGJUUszYVdvzN96gB9tbxWsUcMUaxQxx7VjVflVaerfLD833v8Ax6nf8tv+
A1HG25YWoAczbY23f3q5Px/4Lt/GuhzWZ2peRDzLWY/wN/d/3WrqJf8AUSf9dP4f96pG3edI38Pl
/LQB8peF/A/iT+0rq+i0Rb1tKuPLms5JvLZm2/w/3q9ftvjDpNnEsHiHR9U0WZf4ZrdmX/gLV6ND
DHFOGSMK03zSN/ebav3qWa1t7yDy7m3imXf92RVagDko/iv4Imjd/wDhIIYwy/xKy/8AstV734ze
CrNvk1KS7fb8q28LNurbuvBvhe6EizeH9Nby/mXbbqtaFl4f0bT50+x6VYwMsfytHbqrUDPPJPGX
jjxcy2/hTw+2mWrfL/aWpfL/AN8r/wDtVteGfhtZ6TeNq+sXkmta3u/4+7j5lj/3V/hruF+5b/5/
hp21dkny/wAVAwb/AFzfL/yzoT70Lbv4aH/1kjfw+XSR/MsDbl+7QSPX7v8A20psn3Z/92hf9T/2
0/8AZqGX/Xf7tAAv+sj+792hfux/71OX/WR/L/DTd3yx/wC9QA6P70m3+9RTYW2tJ838VFADfm8t
dvzfvP8A2anN96b/AHad/B/wKhvl8z733aAGlf8ASI22/dVqbtZVj/2WqT/lovy/w03+GNf7zUAc
VqXjSW8vbnSfCtqNT1Dd5clx921tj/00k/ib/ZWrGj+C/J1CTVtZu/7W1pk+W4mj/dwf7Mcf8NdJ
bWlrp9s8NpbwwRKd22OPau6n390LKznn8uaTy4922FGdm/3VWgZynhDxPeaxd3On6mscd9bNI0Lq
u1biHdtWRV3N/ErVoeGbnVL7T7q41CS3b/Tpo4vLjZflWTbu+9/s1gyaReL4P0TV9Mt5TrelQeZ5
M0fltPuX99Gy/wC183/Aq14b/TvCPgrT/wC1po7YRxJlW+Zmk+8yqv8AE26gRneNbS40i/i8W6fH
5k1hH5d5Gv3prVvvf98t81dhY3MF/b2l3bSLNbyxeZHIv8StXGsviTxskm6OTw/oci7W3f8AH3cr
/wCgxr/49XYaPpdpoum22nWEZjtbePbGu7dQMsr/AKuPb/ep235Zv96nL92P/epNu5ZV4+9QIft/
ef8AAajVdqwru3f7VSf8tv8AgNRr8qw/Kv8AwGgBsn+pb/rp/wCzUSx7pG2tt2/NtX+KnN/q2+b+
KpP4n/3aAGru3Rf3dtR7f3fzfL+8/wDZqk/5aR/7tNb/AFa/L/y0/wDZqAI23eZcf3flqT/lt/2z
ob5fOp3/AC2/2ttAEaqrLb/L93/x35aH+WOT/rpUi/djxupjrujk+98zUDFb/XSL/wBM6I/uwr/s
04r+9kb/AGaav3ofu/doECf6hf8Arp/7NQy/67/aWhflj/7af+zUh+Uzt81Ax6r++X/doVf3ca/L
96mjb9oVf4vL+7QvzRx/71AhYF/eS/71FPT+L/eooAb/AAf8CpJNu2X5v4aX+Ff96ue8X+LbXwhp
RvruKebzJFhhht49zNJQB0JbbIu75VVa8g8d/GH+yL+Cx8LtZ6m6bvtLbWkWNs/LtZflqddD8Z/E
WQS+IbiXQNDkX5dNt2/fTL/00b/P+7Xd6J4R0LQdOWxsdMgjhyN25dzSbfu7mb71AC+Gn1ufQIpd
cWBdRl/eSJAm0R7v4fvfeWtpmVWZmbbtWhvuyfN/F/3zWD4g8NjxFJDDdajdRWCLums7dvL8/wD3
m+9t/wBmgZkXfjObUrr+yfCNqup30fyzXn3bS3/3m/i/3VqzovgqK2u11bWrptY1gN8txcD93D83
/LJf4a6SwsbXT7W3tbKCO2t41+WOFdq1a2/u/lX+KgQN/wAtP92j/lov+7RJ/wAtP92nf8tF/wB2
gBq/cj+b+KhvuTU1W+WP+L5qc33ZKAD/AJbf8BpP4YvurT9v7z/gNRr92GgYfdVv+ulOb70n+7TZ
P9X8v96pH/5af7tAhv8Ay0j/AN2m/wDLNfl/5af+zU5fvR/7tN/5Zr/10/8AZqABvuzNTv8Alp/w
Gms3yzfw7ak/5af8BoAav3YvvUf8s2/3qFb5Y/mo/wCWbbf71ADm+9J/u02P/ln/ALtOb7zf7tNX
70f+7QA35mjX/eok+7N/u0v/ACzXk/6z/wBmpT0moANrecv93bTV/dxwr/tU7/lov+7Qv3Y/lX71
ADl/i/3qKI/vSf71FAxq/wCrX/epGjWQssiqwXlcr0oooESj7y/7tRr92P8A3qKKAFcARv8AWl/5
aN/u0UUAH/POmjhf+Bf+zUUUAB4Mh/2ad/y0X/doooAaOVX/AHqRxlZqKKAFb/Wf8BoX7sNFFAA3
3W/3qG+83+7RRQAKPmj/AN2mKMR/9tP/AGaiigoV+Fm+mad/y0/4DRRQAL92OhgSrc/xUUUEjv4m
/wB2o16wj/Z/+JoooAcflRcf3qH+5LRRQMP+Wi/7tMHSL/e/+KoooEPj+/J/vUUUUFH/2Q==
"/></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 6pt; margin-bottom: 6pt;">c.<img border="0" style="width: 242px; height: 134px;" src="
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACGAPIDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3pm/1
n+7R/wAtF/3ajb7023+7/FTtzbl/3aAAfKsfzfxUN8yybajj3NDH+8/ip38M3+9QBJuXztv8W2mx
/djo/wCXj/tnTV3NHC33aABvut/vVIzf6z/dqP5mRv4f3lNkZlab733aAJv4l+992m/wr/vU1WPn
w/3fLb/2Whf9XH/D81AAW3JN/vU7/lt/wGoWVvJuFVvm3feqTd/pDLu/5Z0AH/PHH96hvut8rfeq
NWb/AEX5vvf/ABNSN8ytub/lpQA5v9ZJ/u0L96P/AHaGba0m1furTU3M0Lf7NAB8vlr/ABfNSGQE
Tr/dqGS4jt7T7RPJHHFGd0kjfKqrXmN98R9Y8R6hc6b4B0s3ap8s2qXHywx/7v8An/gNAz1SaaKA
+ZLIqRqvzMzbVWuduPHfhez2LPr2nxsrfMv2hW21x8Xwmn1edJPGHiPU9XkK+Y0Mb+XCrf3f87a3
rb4W+DLWCKOPw7Ztuk+Zpt0jf+PUAaln468K6ipW28QWDbj8u6baf/Hq6COaOYM0ciuu37yturkJ
/hf4KuIXjbw7Zr833o12t/47WHc/CQaW7y+D9f1LRZvveX5jSQt/wGgD0yNv9T838NH8C7f+eleI
ah8V/F3gvVxp3ifSrS5wu5ZLfdH5y/3lau08F/Eyw8aMbe20u+gmQ5kZl3Rp/wBtFoGd23/Lb7v3
ad/y2X/dprN/rt237tO/5eF/3aBDV+7H838VVL7VdP02Kdr2+t7dV+ZmmkVdtJf6pa6Xp63mo3kN
tbr8zSTNtWuA8daPo3xA8AXOu2cR+0wQyTWtw0Plsyr95fm/hagRqX/xd8F2UrKNUe7k+7ttYmk/
+xrrrG6a6s7OZoZIGkj3eXIvzL8teL/B/wCGeGh8S63br032VrIv3f8Apo3/ALLXt/8Azx/hbbQA
1mk3n92vX+9RUbK29v8AR+/96igosMvzTf7tO2/vl/3aJPmWT5f4aF/1i/7tBI1V2xxr935qc33Z
P96j+GP/AHvu0N92SgBNv+kM3/TOk2/6n/Zp3/LZvvfdpq/dh+VqAD7sbfw/NR/z23UMv7ttv96n
M3+s/wB2gA2/vo/vfdqPbujjX5vvVJ/Ev3vu0L92P/eoAjWPbHIu5vvfeqTb++3fL92hvuyU7d+8
/wCA0ARqq/uf9mnfwt9771NX/ljTt3yt838VADWXc03+7UUjR2+yR3VI442Zmb+Fan/5aSf7teaf
E3UrvVr7TPAmksy3Wq/NdSr/AMsbf+L/ANmoAx1+2fFnV5LeCWS08F2c21vL+Vr2T/4mvU9O0ux0
jTmstPt47S2jX5Y4127flpNH0m00HRrTTLGMLbW21F/+Kq+33Zv71Ax3l/vF/wB3bUP3Vt12/wAV
WP8Alsrf7NRru2x/71Ag/hk+X+KnN96T/dpvzbW/3qd/y0k/3aAOO+IHgi38beH1tjtjvoFaS1m/
2v7v+61efaba638HItPurhmu9AvfL/tCP+K0uP4mX/Zr3D+KP7v3a5bWvEHh+7n/AOEXuFa/nu28
ma2t4/M8tW/ik/u0AdFFdW9xYtdRSpJbyR+Ysm75WXbWdpXibTdb1K5t9Nle6W2T95cRDMO7+6rf
dZq848JafHFfat8N/EJkuYLRvtVj87L50P8Ad/2vvV61aWdvYRR2tpBHBbxrtWONdqrQMxrrwppW
q6tb6lqFt9rmt12xxzSbo0+Zvm8v7u6teWFZLWeGRVaNjt27fl21ZX7sdNZVZZP96gYKu2bav3fL
pqq37j5f4ak/5aN/u0i/di/3aAKzQrvP7uTr/eooaNd7fu5OtFAFpvuzU7+Jf92mt92SnL95f92g
kav3Y/8Aeob7sn+9Qv8Aq4/96m/wyf71ADv+Wjf7tNX/AJY1J/y0b/dqNfuw0AH/ACzb/rpTmb/W
f7tNZV8v+9+8/wDZqG/5bUDHK37xf92hfux/71H/AC2Vv9mmru2x/wC9QIc33JqP+Wzf7tDbdrfx
UN/rGb/ZoAaF4i/vf3qP4W/3qI/uw/7tO/5Zt/vUFDf+Wkm3722vL/h8v9vfEXxZ4mk+ZYZP7Pt/
9lV+9t/75WvTblmS2uHXPyoW2/hXnnwTh2+A47hm3SXd1cTSM397dt/9loEeir9xTtX79KzfLNR/
yzX5VX5qU7cS0AL/AMttv+zTV+7Dup3/AC2/4DWB4q8S2fhLw42q3qs8cTKFjj+8zf3aBm+33W+X
+KsbXvE+l+HI91/dbZpPlht418yWRv8AZVfmasvwR40h8b6RPf21hcWkMcyx7pmX5m/i27a3P7E0
2PWJ9WW0h/tCSNVa4ZdzbVoJJLG4/tLT7aaW1mtvOi+a3mXbJH/vVBpGg6ZoNp9n0yzSBGfc237z
N/eZurVpL/rIf92hfuL/AA/vKBnmPxS36D4h8O+LIPlaC6+w3H+1DJ/lq9Q+9Iu37u2vPfjVGsnw
11RmXc0MkLL/AN9LXb6Tc/a9LsbjH+utY5P++lWgRZX7sf8AF81H8Mn+9/DTl27Y6DjbJ/vUDD/l
o3+7TV/5Y/7tO/5aM3+zQv3Y/wDdoEU2Zt7fNN1oqR/vt8zdaKCiw3/LSnL/AKz/AIDTW+7ItOX/
AFi/7tBI1fmjj201vuyf71OX/Vx/dprfdk/3qAJP+Wjf7tMX7sX+7T/+Wjf7tN+VfJWgCPzP3bfL
/wAtNvzf71O3bvOXavy1HJ/qdu370n/s1SbdqzUAOX/WL/u01fux/wC9Ttu6RW3fw1HH/qYf96gA
LcTfK33qm/5aN8v8NV23eXcM3yruqb/lo3+7QAf88aa33f8AgVIJGYQbfl3f3lpfvRt/vUAMmj81
Z4/70e2vNvgm7R+GbzTZDuksNQuIW/2fm/8A2q9Kkbb533vu15foQ/4RT416tpspEdpr8K3Vr/da
RfvL/wChUAeobv3cbbf+WlNlZVjuNzfLXNa54zs9KnXTLaCfU9Xb5lsbNdzfe/ib7qr/AL1bkSte
abKl7bKjTR7ZrdjuVdy/Mv8AtUDMe28Z2mqa8mn6Na3Goxo/l3V5D8sNv/wJvvf8BrR1LQ9L8QWN
vb6rp8N3CrbljmXdtbbV20s7fT4ltbSCOC3jj2xwxrtVali/1NvndQIp6Ro+m6Fpy2GmWsdtbRyf
LGn96tCRtvmNu+6tRt8scjL/AM9Kc3/Lb7v3aABG+aH5f4aNy7V/66U1f9ZD/u0fNsj/AOulBR55
8bbhYfhzewt8z3VxDDGq/wB7du/9lrvtPgW0s7a3X/VxwKq/8Brzbx03/CTfEnw/4XikZre0k/tK
+Vf4VX7v+f8Aar1Hd/pP/AKBCfdWH/epn3Ul2tt/eU9fuw/KtMf/AFbjdj5/++aAHs376T/Zjpsc
i/6P975lp7f6yT5vm8v/AL5pkf8Ay7/e+7QIheRd7fvO9FPO3J+VqKCiVvuzfNUn/LT/AIDTW+7J
Tv8Alt/wGgkb837v/eprN8sn+9Tl+7HQ3+rk+6vzUAO3fvGX/Zpqr/qmp3/LRv8Adpqr/q/92gBr
KrR/Mv8Ay0/9mpzf8tPlpv8Ayz+63+s/9mpSvEtAx+394v8Au1Gv3Y/m/iqT/lov+7Ua/dj/AN6g
QMq7ZPvfeqTb+8Zv9mmt92T733qiuLiGzimuLhtkMce5m/hVaAJf+eW7bTWX93/20rg9Q+MfgqwE
YXUmu2X+G1hZqf4T+IE/jXUGOlaNMmlQttmvrmRVO7+6qr96gDo9e8Qab4dtTcalc+V5nyxxqu6S
Zv7sa/eZq4TxVpWt+L/D0Wt2+jSabrGlS/atMV5N00ka/wALL/Czbfu16bNbQvKJnjRpIl3IzLuZ
P92pl+8v93bQByHgXXdL8TaKNXtreG2vZJNuoKq7WWZf71dW3zLNt2/NXifxLs18B6o3iPw9qMdp
cajujutO/wCe27d+8Va0fg14/OsaafDmqzbtRt1/0d2b5pY1/h/3loKPX/8Altt/2aan3YfvU7d+
+/4DQrbljoJG/wALfL/y0pzf8tPu/dpCu5SP9ulZfmkb+FloGNjj2tH/ALtYnirxJYeFfDk2qXbr
iP8A1Mf8Ukn8KrTfE/i/R/CdkLrVLpY/l/dwq26SRv7qrXEaDoOq+PdbtvFHiuE22nW7btM0s/8A
oySgDS+Gvh++gtdQ8Ua2pbWdYbzGVl+aGP8Ahj/z/s16N/y2/wCA1H8q+d/s1J/y0/4DQIbt+WGm
7flk+b+KnL92P5aP4W/3qADb+8b/AHaRV/1Tf3Vp7feb/doX7yf7tAzPe3Xe3zN1/vUVbIXJ+Vv+
+qKBj/mbzKd/y03f7NNb7slO/wCWn/AaCRq/6uP5aa3+rk/3qF+7D/vUMv7uT/eoAkz+8b/dpq/8
s/8Adp3/AC0b/dqpbSSyOyyQNEsb7Y2Zt3mLt+9QMs7dq/8AAv8A2ag9Jay9X1vT9C01rzU7yO2t
1b70jfe5+6v96uU+0eJvGqs1t53h7Q2+9NIP9MuF/wBlf+Wa/wDj1AGnr3jeHT7/APsnSLWTWNZa
P5bW3+7H/tSN91VrS8L+II/Eeg21+qeXKSY7iE9Ypl+8v/fVSaH4d0vw3arZ6XbRwrt3M3/LSRv7
zN95q47xDcXHgDXm8RWdpJc6TqR23lvDtXbcf8s5F/3vutQI9Hbbsk+b+Kub1/XdStL5NL0XSJr+
+mh3eZIfLt4V/vM3/sq0eHf+EluJri+117a2t5F2w6fbjc0fzfeaT+Jq6b/lo33vu0AfO2sfCHUt
Q8c2VqZo/JvYftWoXFvD5cUXzfMqr/3ztr3bStHsdE0iDTrC3SG2t22oo/8AQv8AerRXb+7/AN2m
/dX+H/WUAOb/AJa/N/DTv4lX/Zprfel/3ad/y0j/AN2gDA1nwl4f19VbVtItbmQ/L5kkfzf99fer
ib74HaCtwbzRb7UNKuom3RtHJ5iq3+zu+b/x6vU1+6u7+9Q33ZKBnli3PxR8LN5MtnZ+JbVR8s0b
eXOy/wC1Sx/GKS3+XVPBuvWvl/eaOHzF/wDZa9S2/vt3+zTU+7D92gZ5gfjHHPbltM8JeILxjJ8v
+j7V/wC+vmpsmpfFHxOzLY6TZ+HbWRdrXF03mTKv+7/9jXqfy7fl/vfw0rfx9/loEcH4c+GGm6Tf
rqmrXE2taw33rq7O5Vb/AGVruV+6v3fvU5f9ZH/u0fwr/vUDGnpN/wCy04N/pH3W+7Ucvyw3Dfdq
YN++/wCA0Ekf8MP+9QzbY5Pl/ipy/dj+Wmt/q5P96gB3/LST/dpfusn+7Sf8tpP92j+KP/doAgK8
n71FRPNJvb5W6/3looKLjfdkpy/6z/gNNZf9dTv+Wn/AaCRq/wCrj+9Q33ZP96hfux01v9XJ/vUA
SfxN/u1yviLxDqNpeW+laLpM17qU0fmeZJ+7t4V/vSN+H3a6hv8AWSLt/hpild0XzfeWgZx+k+CE
W+XWfEN42sav5nyySJ+5t/m+7HH/AA/71VfEWswxeLG0zWNXm0nTfsqyW8kcnlfaJWZlZfM/2fl+
X/aru/4F+Zv9ZXLaza65qEer6bJZWc1nc/u4LiWb/VRtGqtuXb83zbqBG9pEE1rplrb3F417NHD8
1w33pP8Aapuqaba6vpE2n3sayW9yrRyL/vf3azp7/SvBehWy314Ira2t1hjMhzJJtH8K/wATVh7v
E3jRV/13h3Q2/wDAy4X/ANpr/wCPUATeBNWk8u/8OX9yk+p6NMIWk+95kP8Ayzb/AHtvy123/LRv
7u2srRdB03w9YNb6baxwR7tzf3pG/vM38TVq/wDLRv8AdoARfuxf7tJ/B/20pyr/AKv/AHab/D93
/lpQUOb5Wlb/AGaP+Wkf+7Q3/LX/AHacv3l/3aCSNW2xx/71En3ZKd/DH/F81NK/LN/vUDHf8tG/
3aF+7F92j5vO/wCA01dv7n7tAhV+YN83/LSl3Luk/wB2m/8ALP8A7af+zU5v+Wn+zQMP+Wkf+7Td
vyr/AL1O3fvI/wDdpv3o4/8AeoGNdtsdx/s1J/y2/wCA0w/MJV/2ql/5aN/u0CId3yw7v4moX5lm
/wCulOT7sP3qd/C3+9QIP+Wkn+ytIrK3lfN95aRl/fSf7UdEaqvk/d+7QBWeZd7fX+7RUp25Py0U
FE3/AD0p3/LT/gNNb7si07/lp/wGgkav3Y6ZI8awyvI6rGG+ZmbbtqOd2htC8cfmSKrMsf8Aebb9
2vK4/C/jD4glp/FV3Jo+jeZuXSrdv3kn/XRqALfiz4jG/luPD/gqKfUtXlXy/tNp/q7f/a3fdap/
hZpvimOGbVfFup6g9zKzRw2dxN8qqv3m212mi+H9J8OWZs9KsYbaFV+ZY0+Zv95v4q1f4o/92gY1
m2x7mk2ru+Zq4vUPGVxqV5caX4RtV1G8jbbNeSf8etv/ALzfxN/srXT6jplvq2lzWN6nmW8/yyKr
Mu5d3+zUtpY2um2bWtlbxwW8a7VjjXaq0Ac5ongmO01BdW1m6k1jV9v/AB8XH+rh/wBmOP8Ahrq1
X5Yf71Sf8tP+A01flWGgQ1l2rJ9371Ob70n+7Q33W/3qd/E3+7QA0ffi/wB2m/8ALP5t3+s/9mp3
8Uf+7Q33fu/8tKAD+KT7v3aF/wBYv97bQy/6z/dp3/LRf92gBq/6uP8A3qa33ZvvUK3yw/71B+7N
9771AEn/AC0+7/DTVX/VfLt20bv3zf7tNX7sPy0AO3fL12/vKG/5af5203+D/tpTj96T5qABf9ZH
/u03b8q/L/FUi/ej/wB2m/wr/vUANVdvnf71O/5bf8Bob5Vk/wB6nf8ALT/gNADV+7HQ3+rb/eo+
6sfzUf8ALNv96gA/ik+X+GnK3+r/AN2m/wATf7tC/ej+792gCMyLk/vFoqM+Zk/dooKJm+7N/vVJ
/wAtP+A0UUEkUYJjiyevWlb/AFbf71FFAD3AXzG/2ai3fvIf92iigB3/ACzX/rpSsR++5NFFACBs
3G3/AKZ0bvlhoooAG+ZZP96nf8tG/wB2iigA+bdH838NRjmPn+KT/wBmoooAkZl/efL/AA05f9Yv
+7RRQBGv3Y/96nN92T/eoooAdt/fbv8AZqGNF2W+3iiigB38H/bSnN96T/doooAF/wBZH/u00crH
n+9RRQAN9yb/AHqk/wCWn/AaKKAGKT+7pGLeW3P8VFFABu/ezD0WnfxR/wC7RRQBCU5NFFFBR//Z
"/></p>
</td>
</tr>
<tr>
<td bgcolor="#auto" color="#ffffff">
<p style="margin-top: 6pt; margin-bottom: 6pt;"><span style="font-family: 'Arial';">d.</span><img border="0" style="width: 232px; height: 134px;" src="
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACGAOgDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3aNdq
w0SbfJb/AHqcu5Vj3UfeVv8AeoAPvNJ/u01V+aH/AHak/ib/AHaau793/F8v3qAI/wDlmu3/AJ6f
eof5VuKd92Nf97/2ahv+W3zUAO/5bL/u1HGzNHC21l/3qk/5aL/u0Ivyx/eoAb822T5f4qcy/vJP
92j5tsm7+9Tm/wBY3+7QBCv+st/92pP4P+BUL96P5v4aT7yf9tKAGSLuW4+X7y05Vbzo2/6Z05l+
aT/dpyr8y/7tAEK/6uP7v3qDuZLjP96pNvyrt/vUN/q5P/ZaAD/lozfN92o0+5b/ACt/wL71Jc3M
NnHJcXEqxQxpuZnbaq15pd/E+81u5Om+BNGk1SaP5Wvpvlt4/wD4qgD0qTd5LbV3fvKGmjWabdIv
3f4mrzP/AIQDxjrytN4l8Z3EKs3/AB66b+7jX/gVOb4GeGZGk8/UNanbb96S6/8AsaAPTo2Vmj2t
u+WmttZI/wDrpXmZ+Dkdp5baL4s16wkX5l3Tbl/75+WsvWPEHjj4a28Nxq19p+vaW0m1WZvLuP8A
P/fVAHsH8M3/AKDU3/LT+H7teE/Cb4mSXN5N4f1qVt1zI0lrNI38TfM0f/xNe6f8tP8AgNAEbfL9
n3f3ttEn+pk+Xd81OX/lnQzLtb5tvzUAO2t5kn+7TV/5Y/7tSfxN/u1yGqX/AInv9UfSdCslsool
xJq14u5V/wCucf8AE3/jtAHVx/6v7u395RUVrFJb2cMc0vnSKFVpGXbub+9RQBKv3Yf4ad/C3+9R
t/1X8O2j+Fvm/ioAc33pP92mr96P/dpz/wDLT/dpq/8ALNf9mgA+Xavy/wAVDN/rfmo2/u/+2n/s
1Nb5fOoAk/5aL/u01fux/ep3/LRf92mr92P71ADf4ZP96pP4m/3ab/yzb/epzN+8Zf8AZoAav/LP
/do/g/4FQv8Ayz/3aF/1f/AqABl/1n3vmWnL/rF/3abu3NJ/FTl/1i/7tADf4V/3qqX+oWul6dd3
17MsVrAvmSSN/CtWw3yp8v8AFXk3i+WTx749j8GW7sukWDLdatIv/LT7u2P/AD/7LQURWlrq3xev
XvdQkuLDwcjf6Paq22S92/xN/s16jpemWek2NtZ6fbR21un3Y0XbVi0tYbKCO3to1ihijVY41+6q
1L97yqBDW/1bfd+9Tm+9J937tDL+7b/eok+9J/u0CHL95d392sjWPDuj+IIo11TTrW7VT8rSR7mX
/db+GtVfvR/Nu+Wj+Ff96gDyvWvgd4buopZtHM+mXi/NCwkaSNW/3WrU8B+Mr2fUJPC3ieP7P4ht
F+8x+W5X+8tegSf6uT5W+b+7XBfEnwpNrNnHrej/ALvXtLPnWsi/ekVfvR0AdhfajZ6Tpjahe3Ec
FrArNJI38K188Xnxh1G78fjWLcKNOiDQ21rM21Qrf8tG/wDQq7rRdOufi14ftb/xDfrHpvmbY9P0
/wCX94v3vMZv/Qa6PT/hP4J05MpoUVxIpzuumaT/ANC+WgDZ8L2uox2EtzqWsx6pJc7ZFa3RVhRf
7sf+zW8q/NH/ALtQWlla6bbi0sreK2t41+WOFVVV/wCA1Ov/ACz/AN2gA2/Kv+9RR95V+X+KigAX
7sfytR/yzb/eoVflh/2aP4W+X+KgBzfeb/doX70f+7Q33pP92j/lonP8NADV+6vyt96hl3eZTf4V
+Zv9Z/7NQ33ZqAJP+Wn/AAGmr92Oj/ltt/2abG25YfmoAcvzK3+9Tv8Alo3+7Tf4W/3qc33pP92g
AVfmj/3aarfu/wDgX/s1C/ej/wB2mr/q/wCH71ACngSndSq37xf7u2kb7s1P/wCWi/7tAzN1jUF0
nRLrUpNvl2sMkzf8BWuE+D+nyR+EbnxBeL/xMNbumuppP9nd8v8A7M1aHxjuGtfhXqjK21pPLj/7
6kXdXSeHLX7D4S02zXavk2sK/wDjq0CNn/ls3+7TY2/1X+7Tv+Wjf7tNHSGgBG+43H8dL/FJ/u03
+Fvvf6ysfxB4r0Tw15f9s38dr9o+WNT95qBm0v8ArF/3aarfdXd826s3VTqlzpo/sS4tUupAu2ac
blVf4mXb96qHh3wxHockt5cX11qOpXPy3F1cN97+Laq/dVaBEXiDTvEWsXos7LU49M0lo/300K7r
qRv7q/wqv+1WxpWk22i6fDp9r5zQxL96aTzGbn+JmrQk/wBXJR/y2/4DQB5X4LX/AIRr4r694byy
2d/H/aVqrfdVm+8q/wDfX/jtepf8s2/3q808VhLL4x+BrwKd1xFcW7f7u35f/Qq9N/hb5f4qAHH/
AFj/AO7Tf4o1/wBmnN96T5v4aav3o/8AdoAb/wAs1/3v4v8AeopV+6v/AF0ooAVfux/eob5lb/eq
lcXnk3mnw/eWdmXd/wABq395W/3qAJG+9J/u01W+aP8A3ac33pP92j+Jf92gBvzbV/66U1vuzU5f
ur838VDf8tKAD/lp/wABoX7sfzUf8tPu/wANN3N+5+781ADv4W/3qcf9Y/8Au1DJIywt/wBdP/Zq
kZv3kn+7QAKv+r/3aaq/J/20pyttaP5f4aavzIv/AF0oGOPSWnf8tF/3ailm8tZd22n/AHpF/wB2
gRwPxlj874UaptTdtaNv/Ii11ehXS3vhvTrxV+Wa1hk2/wC8q1H4l0wa54Zv9NZeLmB41/3tvy/+
PVy/wj1ZtS+HtvazH/StOdrOZW/h2/d3f8BoA9B/5aN/u1GrLti+b+GmLPHJcyQrJG0iKu5Vb5lr
mtZ0DUvEN9FDPrEtnogiXda2f7uSZv4laT+7/u0DOlWSOS3LRtvXd95W/wBqvNNa+Flz4zuWvPE2
uv8Aa04hhsY1WOGP+7833v8Aer0PTtPs9H0yOxsLdYLWFtsccf8AD81W5Pl87733aBEVlaR2VrbW
sP8AqooljX5v4VqdfmWP/epq/wCuj+7/AKuiNWWOPd/eoAG+7N/vU7/lt/wGmv8ALHN838VSf8tP
+A0AeY+Mdtx8WPh/bxt+8j+0TMv+ztX/AOJr0rd+7Zv9qvMdFLeI/jjqGoxt5lnolmtmrf8ATRvv
f+zV6g23a3y/xUADN+8k/wB2jd+8jXd95aGX5pP92hfvR/N/DQAm5cL83/LSikb/AFa7f71FADtq
Hyv4v7tG35W/3qF/5Z/NQ3+r/wCBUAO3fM/+7R/En+7TW/1kn+7Qq/NH/u0AG75V/wB6j/ntmmq3
7tf96nN/y0oAd/y03f7NV2+Y2/8Ad3fw1Yb73/Aaaq/LH8v3aAK9zH/o0n8X7xW/8eqZt26b/dpz
Ku3/AIFQ3+sk/wB2gCFP9fD97d5f3v8AvmnQbfJ/7aN97/eqRV/eRt/s1Gv+rVdv/LSgAlbas+1V
+7/31Ui/6xd392uetvFekalqur6bDcqzaYqtcSM37tWbd/F/s7a2Wl+1Wu6ymj3SRbopvvL/ALLf
7VADZLy3h+yrPcLG00m2MSNtaRvm+WvG/FNrqXgzx7K1jqTaXofiObbcXXl7vs838TL/AHd2773+
01eg6N4Jhtb2LV9YvptY1rPy3Vx92H/rnH91a1vEfh2x8T6Fc6VqCboZfusv3o2/hZaAIfDvhjTf
DyzLYpJJNON1xeTSeZNO3+01bMO5VhX+6teUeG/F1x4G1F/CnjeZESJMWGpMP3csX91q9M0/VLHU
IYJLC8t7mPb96GRWoAtt/q/lZv8AWf8As1Ok/wCW3zN92hW+Vvm/5aU6Tbtl/wB2gBq/LJH/ANc6
FXasf8PzU5VXzFZV+6u2mr92P/eoAC3yzbv71ct498Wx+E9AnulIe8nTybOFfvSSN92tDxL4p0nw
rpMt7qlwEjztjj/ikb+6q1w/hLRtT8aeI18a+JofJt41/wCJVp8n/LNf+ejUAdB8NfDEnhzwtB9r
ZjqV6xurxm+95jfw/wDAa7H7qtu/56U5fux0N/q/l/vUANmb/Xf9c6I2+aH/AGlpzfek/wB2hfvR
/wC7QA1WVkX5l/1lFNVV8uPb93zKKAJF/wCWdN/5Z/8AbSnK3+po/wCWf/AqABvvSU7b8yf7tNb/
AJaf7tOX70f+7QBH/Cv/AF0ob7s3+9R/Cv8A10pzfdkoAPm87/gNH8MdVNS1Kz0m3mvL+6jtreOP
c0kjbVWuLbV/EXjNkh8PxyaPo/8AFqlwv76Zf+mMf/szUAb+reMNE0XUrbTby/jju7mRVSFTu2/N
95v7q10H8Un+7XKQ+A9Dh0S+01YGZr35bi6kbdcSN/eaT+9u+asbSvHMWhadNpPiSaRtasJBbrHF
G0kl2v8ABIq/xbloA9EVvmj+b7y15h8TvHV1ptsdA8PRTXWszf6xoY2kaBf+A/xV2fhzUNZ1OOS6
1bTV06Ftv2WFn3Tbf+mg+6rVrpDGv7xY1WSQ/My/KzUAfLvhXwH4wXWIbyfwvcT2fmf6RDeSeSsy
/wC1ub5q+oLJFhghjWFYFWNV8pfux/7NTt8qyN92nL/rP+A0ANX/AFcf+9Q3+rbc38VC/dj/AN6h
v9W3+9QBy3jvwVbeNNClsZsJdRjzLWbP+rk/+Jr5x0DwX4mbXLz7Po81xJpMy/arWObyWb/ZVv8A
4mvrdvmZv92q0VjawXbXccMazTqqzSBfmk2/doA86sfjD4ft41s9as9S0e4jbbtuoWb7v+1XRx/E
nwXcROy+IrHbt/ik2t/49XQXlhZ6jbeTe2tvcxsdu2aNZFrBufh14NuHdpPDen7gv/LOHb/6DQMp
3XxZ8E2LL5muQyNt+7DG0n/oK1gN8SNf8Tf6L4M8L3DLu+W+vv3cKr/ert7Hwb4Z0+SNrXQdPhaN
flYW67l/4FW3Gqqsaqu1V/h/u0AeeaH8Mi2otr3i+/8A7a1X+FZF/cQ/7q16Lt2zNt/u0fLtk+79
6nf8tG/3aBDU3bYf/HqP+Wf/AAKiPbtjo/g/4FQAfxSf7tL/AMtE6fdpW+9J/u0f8tI/92gBq/LG
v+9RR8u1f96igAX/AJZ0f8s/+2n/ALNQv/LP/dpP4Pvf8tKAFb/lp/u0qj95H/u0n3vM/wB2j/lp
H/u0ANX5Y4/96uS13xtDb30uk6Fbtq2tZ/494W/dw/7Ujfw11/8AyzX/AHqpWWmWOmx3K2NrDb+Z
I0knlR7dzN/FQBzOn+DLq/v49U8XXS6nequ6GzVf9FtW/wBlf4m/2mp9nrOt6ssd9pFrZHTYrpoP
LmZvOZVby2b+6v3Wrq7mTyY5ZFRnZImZY1/irzqysbC81rStS8Mw3tldzXSz6lH+8jh8vG6RWVvl
3bsfdoGekL9xtu3/AFlcZ440+axu7bxfp8KyXelKy3CY/wBdat/rF/3l+8tdPqWqWej6fJdahcQ2
1vG3zSTNtWuSfVPEHjPfFosbaTorfK2pXEf764X/AKYx/wAK/wC01AjsrG8ttRtbW8tpvMhnj8yN
v7ytVlfmjXd/erL8P6FY+G9HtNJsd/kQq20yNuZv71am35V/3qAD/npTv+Wn/Aaa33ZKd/HQA1fu
x0bvlk3f3qF+7HTW/wBW3+9QBI33m+X+Gmr96OnN95m+b7tNX/ll/u0ADfc/h+9SN92X/doH3P4R
+8/9mob5Vl/3aBj/APlov+7Ua/6uGnf8tF/3abu+WH71Ahzfdk/3qd/y0b/dprfdk/3qd/y0b/do
Aav/ACzo/wCWf/Av/ZqF+9HR/wAs/wDgVAA33pP92nL96P8A3aay/NJ8v8NO/iT/AHaAG7vlX/eo
pq/dj+b+KigBy/8ALP8A3aP4fvfxU7+KP7tNX7v/AAKgAb5mk/3aPuyR/wC7WT4j1uHw9ot7qtyp
kSFMqka7mZv4V/76rxrw1e+N/ihcyadqGpzaTp0IaSZobdo3mVm/1at/s0Ad74k+KWlaRcDStJhk
1rWWbatpZndtb/aZa1fB8niubS7y48UpaxXM0m6C3h/5ZLt+61WPC/g3RPCNmkWl2iRyMf3k7fNJ
J/vNW+yttk27d38NAEn/AC0b/dri9W8bKt//AGV4etH1jWF+Voo2/cwf9dJPur/6FWt4j0K615Ib
ZdUnsrP5vtSW/Eky/wB3zP4ataRo+n6JYw2mm2kdtCq/dRev+9/eagZzWn+CZLq9j1fxVef2vqSt
ujh27bW1+b/lnH/e/wBpq7X/AJ6fKv3ad/yz/wCBUN96T/doEC/eX/doX7q/71O/iX/dpq/dj/3q
AGyfdmqT/lp/wGmt92Snf8tPu/w0ANX7sdG75W/3qbH/AKuGj+GT/eoAkb70nX7tRr/yx+X+GpG+
9J1+7TV3bo/l/hoARun3R/rKV/8Alr/u03+D/tpTj0loGH/LRf8AdoX7sf3mp2795/wGmr92P5qB
DWbbHJ8v8VO/5aN/u0feWTb/AHqc3+sb/doAav8Ayy/3aFb5f+BUL/yz/wB2j/ln97+KgAZv9Z97
7tO/iT/dprKv7z5f4acv3o/92gBv8Mf3fvUUfwx/71FAAv3o/wDdo/g/4FRRQUD8+YT/AHaF/wBc
v+7RRQSG0bY/96kkJ8uSiigoe3+sb/dpqf8ALL/doooERs22Nm/6aU9vlMrf7NFFAD1/1i/7tNU/
JH/vUUUANZv9d7VLgeZ0/hoooERRt+7hpzfMrf71FFADm+9J/u1HkZi4/hoooAXA8tf96huBLiii
gY/+P/gNNX7sdFFAg+6sn+9TmX94zf7NFFAxq/8ALP8A3aRSdv8AwKiigYrfel/3ad/Ev+7RRQIi
PSL/AHv/AIqiiigZ/9k=
"/></p>
</td>
</tr>
</table>
<p style="text-align: left; margin-top: 0pt; margin-bottom: 8pt;"></p>
</body>
</html>

Anon7 - 2021